login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319194
a(n) = Sum_{k=1..n} sigma(n,k).
17
1, 6, 38, 373, 4461, 68033, 1202753, 24757484, 574608039, 14925278329, 427729375161, 13424413453317, 457608305315211, 16841852554413561, 665483754539870667, 28101844918556128030, 1262901795439193700478, 60182608193322255156347, 3031285556584399354961535
OFFSET
1,2
LINKS
FORMULA
a(n) ~ n^n / (1 - exp(-1)).
a(n) = Sum_{k=1..n} k^n * floor(n/k). - Daniel Suteu, Nov 10 2018
MAPLE
with(NumberTheory): seq(sum(sigma[n](k), k = 1..n), n = 1..20); # Vaclav Kotesovec, Aug 20 2019
MATHEMATICA
Table[Sum[DivisorSigma[n, k], {k, 1, n}], {n, 1, 20}]
PROG
(PARI) a(n) = sum(k=1, n, sigma(k, n)); \\ Michel Marcus, Sep 13 2018
(PARI) a(n) = sum(k=1, n, k^n * (n\k)); \\ Daniel Suteu, Nov 10 2018
(Python)
from math import isqrt
from sympy import bernoulli
def A319194(n): return (((s:=isqrt(n))+1)*((b:=bernoulli(n+1))-bernoulli(n+1, s+1))+sum(k**n*(n+1)*((q:=n//k)+1)-b+bernoulli(n+1, q+1) for k in range(1, s+1)))//(n+1) # Chai Wah Wu, Oct 21 2023
CROSSREFS
Sequence in context: A062814 A349844 A367838 * A303865 A319647 A239983
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 13 2018
STATUS
approved