login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308652
a(n) = Product_{k=1..n} sigma(n,k).
1
1, 1, 5, 252, 380562, 26605273464, 146392210728465000, 84641321148614770425516288, 7097143900835489590932722296959504144, 109983275218947201453245400551817117367706036248320, 397899007017966277799025689101644536884667639093655295898437500000
OFFSET
0,3
FORMULA
a(n) ~ (n!)^n.
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12).
MAPLE
with(NumberTheory): seq(product(sigma[n](k), k = 1..n), n = 0..10);
MATHEMATICA
Table[Product[DivisorSigma[n, k], {k, 1, n}], {n, 1, 10}]
PROG
(PARI) a(n) = prod(k=1, n, sigma(k, n));
for(n=1, 10, print1(a(n), ", "))
CROSSREFS
Sequence in context: A060943 A336295 A332125 * A002770 A069071 A275930
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 20 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Aug 23 2019
STATUS
approved