login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275930
a(n) = F(n+5)*F(n+2)^5, where F = Fibonacci (A000045).
1
5, 256, 3159, 65625, 1114112, 20421115, 363484989, 6542701056, 117265259375, 2105190412273, 37769592176640, 677792498259891, 12162186734914229, 218243684178400000, 3916209628945328967, 70273629018014076105, 1261008431526362415104, 22627882807257322061611, 406040850098667041878125
OFFSET
0,1
COMMENTS
The right-hand side of Helmut Postl's identity F(2*n+5) + F(n)*F(n+3)^5 = F(n+5)*F(n+2)^5.
LINKS
FORMULA
From Colin Barker, Aug 31 2016: (Start)
a(n) = 13*a(n-1)+104*a(n-2)-260*a(n-3)-260*a(n-4)+104*a(n-5)+13*a(n-6)-a(n-7) for n>6 .
G.f.: (5+191*x-689*x^2-766*x^3+311*x^4+39*x^5-3*x^6) / ((1+x)*(1-18*x+x^2)*(1-3*x+x^2)*(1+7*x+x^2)).
(End)
MATHEMATICA
Table[(Fibonacci[n + 5] Fibonacci[n + 2]^5), {n, 0, 20}] (* Vincenzo Librandi, Sep 02 2016 *)
PROG
(PARI) Vec((5+191*x-689*x^2-766*x^3+311*x^4+39*x^5-3*x^6)/((1+x)*(1-18*x+x^2)*(1-3*x+x^2)*(1+7*x+x^2)) + O(x^20)) \\ Colin Barker, Aug 31 2016
(Magma) [Fibonacci(n+5)*Fibonacci(n+2)^5: n in [0..25]]; // Vincenzo Librandi, Sep 92 2016
CROSSREFS
Cf. A000045.
Sequence in context: A308652 A002770 A069071 * A181397 A283039 A055386
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 31 2016
STATUS
approved