login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275932
a(n) = F(2*n+6)*F(2*n+2)^3, where F = Fibonacci (A000045).
1
8, 567, 28160, 1333584, 62723375, 2947166208, 138457523672, 6504579992295, 305576963500544, 14355613810692000, 674408279720748383, 31682833585030397952, 1488418770572887642280, 69923999385781980681879, 3284939552377913067968000, 154322234962490820966855408
OFFSET
0,1
COMMENTS
The right-hand side of Helmut Postl's identity F(2n+6) + F(n)*F(n+4)^3 = F(n+6)*F(n+2)^3, n even.
FORMULA
From Colin Barker, Aug 31 2016: (Start)
a(n) = 55*a(n-1)-385*a(n-2)+385*a(n-3)-55*a(n-4)+a(n-5) for n>4.
G.f.: (8+127*x+55*x^2-x^3) / ((1-x)*(1-47*x+x^2)*(1-7*x+x^2)).
(End)
MATHEMATICA
Table[(Fibonacci[2 n + 6] Fibonacci[2 n + 2]^3), {n, 0, 20}] (* Vincenzo Librandi, Sep 02 2016 *)
PROG
(PARI) Vec((8+127*x+55*x^2-x^3)/((1-x)*(1-47*x+x^2)*(1-7*x+x^2)) + O(x^20)) \\ Colin Barker, Aug 31 2016
(Magma) [Fibonacci(2*n+6)*Fibonacci(2*n+2)^3: n in [0..25]]; // Vincenzo Librandi, Sep 02 2016
CROSSREFS
Cf. A000045.
Sequence in context: A301950 A240300 A240432 * A058045 A086641 A248706
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 31 2016
STATUS
approved