login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275933
Decimal expansion of constant related to complexity of the tribonacci word (A080843).
0
1, 0, 6, 0, 5, 2, 3, 8, 2, 9, 1, 0, 2, 6, 6, 3, 6, 1, 2, 0, 7, 9, 7, 2, 6, 9, 6, 3, 7, 5, 6, 3, 3, 5, 5, 7, 7, 4, 3, 2, 2, 9, 4, 2, 8, 3, 3, 5, 9, 4, 7, 4, 4, 6, 1, 0, 8, 1, 7, 8, 8, 3, 9, 9, 3, 8, 7, 4, 9, 4, 7, 0, 1, 4, 1, 0, 1, 8, 4, 7, 0, 1, 0, 1, 8, 5, 6, 2, 2, 0, 8, 7, 4, 3, 7, 0, 3, 9, 2, 9, 3, 3, 5, 0, 1, 8, 1
OFFSET
2,3
COMMENTS
The minimal polynomial of this constant is x^3 - 13*x^2 + 27*x - 17, and it is its unique real root. - Amiram Eldar, May 27 2023
LINKS
Nataliya Chekhova, Pascal Hubert, and Ali Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, Journal de théorie des nombres de Bordeaux, 13.2 (2001): 371-394.
FORMULA
Equals 9+(6*t-4)/(t^2+1), where t is the tribonacci constant A058265.
Equals (13 + (847 - 33*sqrt(33))^(1/3) + (11 * (77 + 3*sqrt(33)))^(1/3))/3. - Amiram Eldar, May 27 2023
EXAMPLE
10.6052382910266361207972696375...
MATHEMATICA
RealDigits[x /. FindRoot[x^3 - 13*x^2 + 27*x - 17, {x, 10}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, May 27 2023 *)
CROSSREFS
Sequence in context: A218850 A021627 A257580 * A079540 A011492 A274419
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Sep 02 2016
EXTENSIONS
More terms from Joerg Arndt, Sep 02 2016
STATUS
approved