OFFSET
2,3
COMMENTS
The minimal polynomial of this constant is x^3 - 13*x^2 + 27*x - 17, and it is its unique real root. - Amiram Eldar, May 27 2023
LINKS
Nataliya Chekhova, Pascal Hubert, and Ali Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, Journal de théorie des nombres de Bordeaux, 13.2 (2001): 371-394.
FORMULA
Equals 9+(6*t-4)/(t^2+1), where t is the tribonacci constant A058265.
Equals (13 + (847 - 33*sqrt(33))^(1/3) + (11 * (77 + 3*sqrt(33)))^(1/3))/3. - Amiram Eldar, May 27 2023
EXAMPLE
10.6052382910266361207972696375...
MATHEMATICA
RealDigits[x /. FindRoot[x^3 - 13*x^2 + 27*x - 17, {x, 10}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, May 27 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Sep 02 2016
EXTENSIONS
More terms from Joerg Arndt, Sep 02 2016
STATUS
approved