login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356086
Intersection of A001952 and A022838.
4
3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, 88, 95, 102, 105, 109, 112, 116, 119, 122, 126, 129, 133, 136, 143, 150, 157, 174, 180, 187, 204, 211, 218, 221, 225, 228, 232, 235, 242, 245, 249, 252, 256, 259, 266, 273, 284, 285, 287, 289, 290, 292, 294
OFFSET
1,1
COMMENTS
This is the third of four sequences, u^v, u^v', u'^v, u'^v', that partition the positive integers. See A346308.
EXAMPLE
(1) u ^ v = ( 1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308
(2) u ^ v' = ( 2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, ...) = A356085
(3) u' ^ v = ( 3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, ...) = A356086
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087
MATHEMATICA
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
Intersection[u, v] (* A346308 *)
Intersection[u, v1] (* A356085 *)
Intersection[u1, v] (* A356086 *)
Intersection[u1, v1] (* A356087 *)
PROG
(Python)
from math import isqrt
from itertools import count, islice
def A356086_gen(): # generator of terms
return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2), ((k:=n<<1)+isqrt(k*n) for n in count(1)))
A356086_list = list(islice(A356086_gen(), 30)) # Chai Wah Wu, Aug 06 2022
CROSSREFS
Cf. A001951, A001952, A022838, A054406, A346308, A356085, A356087, A356088 (results of composition instead of intersections).
Sequence in context: A047280 A310054 A310055 * A310056 A189524 A288205
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 04 2022
STATUS
approved