login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355989
a(n) = n! / (2 * floor(n/2)!).
5
1, 3, 6, 30, 60, 420, 840, 7560, 15120, 166320, 332640, 4324320, 8648640, 129729600, 259459200, 4410806400, 8821612800, 167610643200, 335221286400, 7039647014400, 14079294028800, 323823762662400, 647647525324800, 16191188133120000, 32382376266240000
OFFSET
2,2
FORMULA
E.g.f.: (1 - x^2) * (exp(x^2) - 1)/(2 * (1 - x)).
a(n) = A081125(n)/2.
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=2} 1/a(n) = 3*exp(1/4)*sqrt(Pi)*erf(1/2) - 2, where erf is the error function.
Sum_{n>=2} (-1)^n/a(n) = 2 - exp(1/4)*sqrt(Pi)*erf(1/2). (End)
MATHEMATICA
a[n_] := n!/(2 * Floor[n/2]!); Array[a, 25, 2] (* Amiram Eldar, Jul 22 2022 *)
PROG
(PARI) a(n) = n!/(2*(n\2)!);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^2)*(exp(x^2)-1)/(2*(1-x))))
(Python)
from math import factorial, floor
def a(n): return int(factorial(n)/(2*factorial(floor(n/2))))
print([a(n) for n in range(2, 30)]) # Javier Rivera Romeu, Jul 22 2022
(Python)
from sympy import rf
def A355989(n): return rf((m:=n+1>>1)+(n+1&1), m)>>1 # Chai Wah Wu, Jul 22 2022
CROSSREFS
Column 2 of A355996.
Sequence in context: A136946 A125521 A211168 * A215294 A350756 A090932
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 22 2022
STATUS
approved