login
A355991
a(n) = n! * Sum_{k=1..n} 1/(k! * floor(n/k)!).
7
1, 2, 5, 12, 57, 158, 1101, 5442, 28811, 212502, 2337513, 9422306, 122489967, 1654319046, 13917499277, 111631450818, 1897734663891, 23705612782022, 450406642858401, 3091477152208002, 51404897928720023, 1130752882197523686, 26007316290543044757
OFFSET
1,2
LINKS
FORMULA
E.g.f.: (1/(1-x)) * Sum_{k>0} (1 - x^k) * (exp(x^k) - 1)/k!.
MATHEMATICA
a[n_] := n! * Sum[1/(k! * Floor[n/k]!), {k, 1, n}]; Array[a, 23] (* Amiram Eldar, Jul 22 2022 *)
PROG
(PARI) a(n) = n!*sum(k=1, n, 1/(k!*(n\k)!));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (1-x^k)*(exp(x^k)-1)/k!)/(1-x)))
CROSSREFS
Row sums of A355996.
Sequence in context: A002358 A083699 A064636 * A376148 A347598 A293023
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 22 2022
STATUS
approved