OFFSET
0,4
COMMENTS
LINKS
Juggling Information Service, Site Swap notation
FORMULA
a(n) = Sum_{d|n} (1/n) * Phi(n/d) * Sum_{k=0..d} [ ((n/d)^(d-k)) * (((n/d)-1)^k) * A008290(d, k) ]. (Note: this abbreviated formula supposes that 0^0 = 1. For a practical implementation, see the Maple procedure below.)
MAPLE
MATHEMATICA
Unprotect[Power]; 0^0 = 1; a[n_] := (1/n) DivisorSum[n, EulerPhi[n/#]*Sum[ (n/#)^(# - k)*(n/# - 1)^k*#!*Gamma[# - k + 1, -1]/(E*k!*(# - k)!), {k, 0, #}]&] // FunctionExpand; a[0] = 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 06 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 02 2001
STATUS
approved