login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355994
Expansion of e.g.f. -LambertW(x^2/2 * log(1-x)).
1
0, 0, 0, 3, 6, 20, 270, 1764, 12600, 169560, 1937880, 22300740, 349806600, 5556245760, 89073856872, 1678920566400, 33550354656000, 687175528253760, 15462823882213440, 370285712520237360, 9180722384533375200, 242398467521271149760
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=1..floor(n/3)} k^(k-1) * |Stirling1(n-2*k,k)|/(2^k * (n-2*k)!).
MATHEMATICA
With[{m = 25}, Range[0, m]! * CoefficientList[Series[-ProductLog[x^2/2 * Log[1 - x]], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(-lambertw(x^2/2*log(1-x)))))
(PARI) a(n) = n!*sum(k=1, n\3, k^(k-1)*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 24 2022
STATUS
approved