OFFSET
1,3
COMMENTS
a(n) is the smallest natural number m such that g^m = 1 for any g in An.
If m <= n, a m-cycle occurs in some permutation in An if and only if m is odd or m <= n - 2. The exponent is the LCM of the m's satisfying these conditions, leading to the formula below.
LINKS
Alexander Gruber, Table of n, a(n) for n = 1..2308
FORMULA
Explicit:
a(n) = lcm{1, ..., n-1} if n is even.
= lcm{1, ..., n-2, n} if n is odd.
Recursive:
Let a(1) = a(2) = 1 and a(3) = 3. Then
a(n) = lcm{a(n-1), n-2} if n is even.
= lcm{a(n-2), n-3, n} if n is odd.
EXAMPLE
For n = 7, lcm{1,...,5,7} = 420.
MATHEMATICA
Table[If[Mod[n, 2] == 0, LCM @@ Range[n - 1],
LCM @@ Join[Range[n - 2], {n}]], {n, 1, 100}] (* or *)
a[1] = 1; a[2] = 1; a[3] = 3; a[n_] := a[n] =
If[Mod[n, 2] == 0, LCM[a[n - 1], n - 2], LCM[a[n - 2], n - 3, n]]; Table[a[n], {n, 1, 40}]
PROG
(Magma)
for n in [1..40] do
Exponent(AlternatingGroup(n));
end for;
(Magma)
for n in [1..40] do
if n mod 2 eq 0 then
L := [1..n-1];
else
L := Append([1..n-2], n);
end if;
LCM(L);
end for;
(PARI) a(n)=lcm(if(n%2, concat([2..n-2], n), [2..n-1])) \\ Charles R Greathouse IV, Mar 02 2014
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Alexander Gruber, Jan 31 2013
STATUS
approved