login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211168
Exponent of alternating group An.
1
1, 1, 3, 6, 30, 60, 420, 420, 1260, 2520, 27720, 27720, 360360, 360360, 360360, 360360, 6126120, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
OFFSET
1,3
COMMENTS
a(n) is the smallest natural number m such that g^m = 1 for any g in An.
If m <= n, a m-cycle occurs in some permutation in An if and only if m is odd or m <= n - 2. The exponent is the LCM of the m's satisfying these conditions, leading to the formula below.
LINKS
FORMULA
Explicit:
a(n) = lcm{1, ..., n-1} if n is even.
= lcm{1, ..., n-2, n} if n is odd.
Recursive:
Let a(1) = a(2) = 1 and a(3) = 3. Then
a(n) = lcm{a(n-1), n-2} if n is even.
= lcm{a(n-2), n-3, n} if n is odd.
a(n) = A003418(n)/(1 + [n in A228693]) for n > 1. - Charlie Neder, Apr 25 2019
EXAMPLE
For n = 7, lcm{1,...,5,7} = 420.
MATHEMATICA
Table[If[Mod[n, 2] == 0, LCM @@ Range[n - 1],
LCM @@ Join[Range[n - 2], {n}]], {n, 1, 100}] (* or *)
a[1] = 1; a[2] = 1; a[3] = 3; a[n_] := a[n] =
If[Mod[n, 2] == 0, LCM[a[n - 1], n - 2], LCM[a[n - 2], n - 3, n]]; Table[a[n], {n, 1, 40}]
PROG
(Magma)
for n in [1..40] do
Exponent(AlternatingGroup(n));
end for;
(Magma)
for n in [1..40] do
if n mod 2 eq 0 then
L := [1..n-1];
else
L := Append([1..n-2], n);
end if;
LCM(L);
end for;
(PARI) a(n)=lcm(if(n%2, concat([2..n-2], n), [2..n-1])) \\ Charles R Greathouse IV, Mar 02 2014
CROSSREFS
Even entries given by the sequence A076100, or the odd entries in the sequence A003418.
The records of this sequence are a subsequence of A002809 and A126098.
Sequence in context: A136944 A136946 A125521 * A355989 A215294 A350756
KEYWORD
nonn,nice
AUTHOR
Alexander Gruber, Jan 31 2013
STATUS
approved