login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponent of alternating group An.
1

%I #51 Feb 16 2022 23:40:56

%S 1,1,3,6,30,60,420,420,1260,2520,27720,27720,360360,360360,360360,

%T 360360,6126120,12252240,232792560,232792560,232792560,232792560,

%U 5354228880,5354228880,26771144400,26771144400,80313433200,80313433200,2329089562800,2329089562800

%N Exponent of alternating group An.

%C a(n) is the smallest natural number m such that g^m = 1 for any g in An.

%C If m <= n, a m-cycle occurs in some permutation in An if and only if m is odd or m <= n - 2. The exponent is the LCM of the m's satisfying these conditions, leading to the formula below.

%H Alexander Gruber, <a href="/A211168/b211168.txt">Table of n, a(n) for n = 1..2308</a>

%F Explicit:

%F a(n) = lcm{1, ..., n-1} if n is even.

%F = lcm{1, ..., n-2, n} if n is odd.

%F Recursive:

%F Let a(1) = a(2) = 1 and a(3) = 3. Then

%F a(n) = lcm{a(n-1), n-2} if n is even.

%F = lcm{a(n-2), n-3, n} if n is odd.

%F a(n) = A003418(n)/(1 + [n in A228693]) for n > 1. - _Charlie Neder_, Apr 25 2019

%e For n = 7, lcm{1,...,5,7} = 420.

%t Table[If[Mod[n, 2] == 0, LCM @@ Range[n - 1],

%t LCM @@ Join[Range[n - 2], {n}]], {n, 1, 100}] (* or *)

%t a[1] = 1; a[2] = 1; a[3] = 3; a[n_] := a[n] =

%t If[Mod[n, 2] == 0, LCM[a[n - 1], n - 2], LCM[a[n - 2], n - 3, n]]; Table[a[n], {n, 1, 40}]

%o (Magma)

%o for n in [1..40] do

%o Exponent(AlternatingGroup(n));

%o end for;

%o (Magma)

%o for n in [1..40] do

%o if n mod 2 eq 0 then

%o L := [1..n-1];

%o else

%o L := Append([1..n-2],n);

%o end if;

%o LCM(L);

%o end for;

%o (PARI) a(n)=lcm(if(n%2,concat([2..n-2],n),[2..n-1])) \\ _Charles R Greathouse IV_, Mar 02 2014

%Y Even entries given by the sequence A076100, or the odd entries in the sequence A003418.

%Y The records of this sequence are a subsequence of A002809 and A126098.

%K nonn,nice

%O 1,3

%A _Alexander Gruber_, Jan 31 2013