login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354211
a(n) is the numerator of Sum_{k=0..n} 1 / (2*k+1)!.
5
1, 7, 47, 5923, 426457, 15636757, 7318002277, 1536780478171, 603180793741, 142957467201379447, 60042136224579367741, 10127106976545720025649, 18228792557782296046168201, 12796612375563171824410077103, 3463616416319098507140327535879, 1380498543075754976417359117871773
OFFSET
0,2
FORMULA
Numerators of coefficients in expansion of sinh(sqrt(x)) / (sqrt(x) * (1 - x)).
EXAMPLE
1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ...
MATHEMATICA
Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
PROG
(PARI) a(n) = numerator(sum(k=0, n, 1/(2*k+1)!)); \\ Michel Marcus, May 24 2022
(Python)
from fractions import Fraction
from math import factorial
def A354211(n): return sum(Fraction(1, factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, May 24 2022
STATUS
approved