login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354206
a(n) = A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.
5
1, 1, 1, 23, 3, 1, 1, 5, 11, 3, 2, 23, 1, 1, 3, 469, 2, 11, 1, 69, 1, 2, 1, 5, 53, 1, 4, 23, 11, 3, 7, 69, 2, 2, 3, 253, 3, 1, 1, 15, 1, 1, 1, 46, 33, 1, 2, 469, 33, 53, 2, 23, 23, 4, 6, 5, 1, 11, 13, 69, 29, 7, 11, 19507, 3, 2, 1, 46, 1, 3, 2, 55, 2, 3, 53, 23, 2, 1, 3, 1407, 2797, 1, 5, 23, 6, 1, 11, 10, 9, 33
OFFSET
1,4
FORMULA
Multiplicative with a(p^e) = A354203((q^(e+1)-1)/(q-1)) where q = A354200(A000720(p)).
a(n) = A354203(A354205(n)) = A354203(sigma(A354202(n))).
a(n) = n - A354207(n).
PROG
(PARI)
A354200(n) = if(1==n, 5, my(p=prime(n), m=p%4); forprime(q=1+p, , if(m==(q%4), return(q))));
A354201(n) = if(n<=3, (n+1)\2, my(m=prime(n)%4); forstep(i=n-1, 0, -1, if(m==(prime(i)%4), return(prime(i)))));
A354202(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1] = A354200(primepi(f[k, 1]))); factorback(f); };
A354203(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1] = A354201(primepi(f[k, 1]))); factorback(f); };
A354206(n) = A354203(sigma(A354202(n)));
CROSSREFS
Cf. A354361 (positions of 1's).
Cf. also A326042, A348750, A354088, A354096 for similar constructions.
Sequence in context: A051313 A350201 A040518 * A040517 A040519 A040520
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, May 23 2022
STATUS
approved