login
A354204
a(n) = phi(A354202(n)), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)).
3
1, 4, 6, 20, 12, 24, 10, 100, 42, 48, 18, 120, 16, 40, 72, 500, 28, 168, 22, 240, 60, 72, 30, 600, 156, 64, 294, 200, 36, 288, 42, 2500, 108, 112, 120, 840, 40, 88, 96, 1200, 52, 240, 46, 360, 504, 120, 58, 3000, 110, 624, 168, 320, 60, 1176, 216, 1000, 132, 144, 66, 1440, 72, 168, 420, 12500, 192, 432, 70, 560, 180
OFFSET
1,2
FORMULA
Multiplicative with a(p^e) = (q-1) * q^(e-1), where q = A354200(A000720(p)).
a(n) = A000010(A354202(n)).
a(n) = Sum_{d|n} A008683(n/d) * A354202(d).
PROG
(PARI)
A354200(n) = if(1==n, 5, my(p=prime(n), m=p%4); forprime(q=1+p, , if(m==(q%4), return(q))));
A354204(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1] = A354200(primepi(f[k, 1]))); eulerphi(factorback(f)); };
\\ Alternatively:
A354204v2(n) = { my(f=factor(n), q); prod(k=1, #f~, q = A354200(primepi(f[k, 1])); (q-1)*(q^(f[k, 2]-1))); };
CROSSREFS
Möbius transform of A354202.
Sequence in context: A174936 A360823 A367864 * A123169 A205955 A023863
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, May 23 2022
STATUS
approved