login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.
5

%I #15 May 24 2022 16:31:53

%S 1,1,1,23,3,1,1,5,11,3,2,23,1,1,3,469,2,11,1,69,1,2,1,5,53,1,4,23,11,

%T 3,7,69,2,2,3,253,3,1,1,15,1,1,1,46,33,1,2,469,33,53,2,23,23,4,6,5,1,

%U 11,13,69,29,7,11,19507,3,2,1,46,1,3,2,55,2,3,53,23,2,1,3,1407,2797,1,5,23,6,1,11,10,9,33

%N a(n) = A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.

%H Antti Karttunen, <a href="/A354206/b354206.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F Multiplicative with a(p^e) = A354203((q^(e+1)-1)/(q-1)) where q = A354200(A000720(p)).

%F a(n) = A354203(A354205(n)) = A354203(sigma(A354202(n))).

%F a(n) = n - A354207(n).

%o (PARI)

%o A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));

%o A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));

%o A354202(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); factorback(f); };

%o A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };

%o A354206(n) = A354203(sigma(A354202(n)));

%Y Cf. A000203, A000720, A354200, A354201, A354202, A354203, A354205, A354207.

%Y Cf. A354361 (positions of 1's).

%Y Cf. also A326042, A348750, A354088, A354096 for similar constructions.

%K nonn,mult

%O 1,4

%A _Antti Karttunen_, May 23 2022