login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353412
The odd part of hybrid shift: a(n) = A000265(A252463(n)).
4
1, 1, 1, 1, 3, 3, 5, 1, 1, 5, 7, 3, 11, 7, 3, 1, 13, 9, 17, 5, 5, 11, 19, 3, 9, 13, 1, 7, 23, 15, 29, 1, 7, 17, 15, 9, 31, 19, 11, 5, 37, 21, 41, 11, 3, 23, 43, 3, 25, 25, 13, 13, 47, 27, 21, 7, 17, 29, 53, 15, 59, 31, 5, 1, 33, 33, 61, 17, 19, 35, 67, 9, 71, 37, 9, 19, 35, 39, 73, 5, 1, 41, 79, 21, 39, 43, 23, 11
OFFSET
1,5
FORMULA
a(n) = A000265(A252463(n)).
a(2*n) = A000265(n), a(2*n-1) = A353413(n) = A000265(A064216(n)).
For all n >= 1, A000005(a(n)) = A320107(n).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A252463(n) = if(!(n%2), n/2, A064989(n));
(Python)
from math import prod
from sympy import factorint, prevprime
def A353412(n): return int(bin(prod(1 if p == 2 else prevprime(p)*e for p, e in factorint(n).items()) if n % 2 else n//2)[2:].rstrip('0'), 2) # Chai Wah Wu, Apr 18 2022
CROSSREFS
Cf. A000265 (even bisection), A353413 (odd bisection).
Sequence in context: A067462 A320298 A021753 * A062563 A091931 A109824
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 18 2022
STATUS
approved