Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Apr 18 2022 22:33:42
%S 1,1,1,1,3,3,5,1,1,5,7,3,11,7,3,1,13,9,17,5,5,11,19,3,9,13,1,7,23,15,
%T 29,1,7,17,15,9,31,19,11,5,37,21,41,11,3,23,43,3,25,25,13,13,47,27,21,
%U 7,17,29,53,15,59,31,5,1,33,33,61,17,19,35,67,9,71,37,9,19,35,39,73,5,1,41,79,21,39,43,23,11
%N The odd part of hybrid shift: a(n) = A000265(A252463(n)).
%H Antti Karttunen, <a href="/A353412/b353412.txt">Table of n, a(n) for n = 1..16384</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A000265(A252463(n)).
%F a(2*n) = A000265(n), a(2*n-1) = A353413(n) = A000265(A064216(n)).
%F For all n >= 1, A000005(a(n)) = A320107(n).
%o (PARI)
%o A000265(n) = (n>>valuation(n,2));
%o A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o A252463(n) = if(!(n%2),n/2,A064989(n));
%o A353412(n) = A000265(A252463(n));
%o (Python)
%o from math import prod
%o from sympy import factorint, prevprime
%o def A353412(n): return int(bin(prod(1 if p == 2 else prevprime(p)*e for p, e in factorint(n).items()) if n % 2 else n//2)[2:].rstrip('0'),2) # _Chai Wah Wu_, Apr 18 2022
%Y Cf. A000005, A252463, A064216, A064989, A320107.
%Y Cf. A000265 (even bisection), A353413 (odd bisection).
%K nonn
%O 1,5
%A _Antti Karttunen_, Apr 18 2022