OFFSET
0,4
COMMENTS
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
FORMULA
From Andrew Howroyd, Feb 12 2022: (Start)
a(n) = Sum_{k=1..n} R(n,k)*(Sum_{r=k..n} binomial(r, k)*(-1)^(r-k)), where R(n,k) = Sum_{j=1..floor((sqrt(8*n+1)-1)/2)} k*(k-1)^(j-1) * j! * A008289(n,j).
G.f.: 1 + Sum_{r>=1} Sum_{k=1..r} R(k,x) * binomial(r, k)*(-1)^(r-k), where R(k,x) = Sum_{j>=1} k*(k-1)^(j-1) * j! * [y^j](Product_{k>=1} 1 + y*x^k).
(End)
EXAMPLE
The a(1) = 1 through a(5) = 9 patterns:
(1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1)
(1,1,2) (1,1,1,2) (1,1,1,1,2)
(1,2,2) (1,2,2,2) (1,1,1,2,2)
(2,1,1) (2,1,1,1) (1,1,2,2,2)
(2,2,1) (2,2,2,1) (1,2,2,2,2)
(2,1,1,1,1)
(2,2,1,1,1)
(2,2,2,1,1)
(2,2,2,2,1)
The a(6) = 57 patterns grouped by sum:
111111 111112 111122 112221 111223 111233 112333 122333
111211 111221 122211 111322 111332 113332 133322
112111 122111 211122 112222 112223 122233 221333
211111 221111 221112 211222 113222 133222 223331
221113 122222 211333 333122
222112 211133 222133 333221
222211 221222 222331
223111 222113 233311
311122 222122 331222
322111 222221 332221
222311 333112
233111 333211
311222
322211
331112
332111
MATHEMATICA
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@Permutations/@allnorm[n], UnsameQ@@Length/@Split[#]&]], {n, 0, 6}]
PROG
(PARI)
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
seq(n)={my(u=P(n), c=poldegree(u[#u])); concat([1], sum(k=1, c, R(u, k)*sum(r=k, c, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 11 2022
CROSSREFS
The version for runs instead of run-lengths is A351200.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A131689 counts patterns by number of distinct parts.
Counting words with all distinct runs:
- A351202 = permutations of prime factors.
- A351638 = word structures.
Row sums of A350824.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 10 2022
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Feb 11 2022
STATUS
approved