login
A336140
Number of ways to choose a set partition of the parts of a strict integer composition of n.
3
1, 1, 1, 5, 5, 9, 39, 43, 73, 107, 497, 531, 951, 1345, 2125, 8789, 9929, 16953, 24723, 38347, 52717, 219131, 240461, 419715, 600075, 938689, 1278409, 1928453, 6853853, 7815657, 13205247, 19051291, 29325121, 40353995, 60084905, 80722899, 277280079, 312239953
OFFSET
0,4
COMMENTS
A strict composition of n is a finite sequence of distinct positive integers summing to n.
LINKS
FORMULA
a(n) = Sum_{k = 0..n} A000110(k) * A072574(n,k) = Sum_{k = 0..n} k! * A000110(k) * A008289(n,k).
MAPLE
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, combinat[bell](p)*p!, b(n, i-1, p)+
b(n-i, min(n-i, i-1), p+1)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 30 2020
MATHEMATICA
Table[Sum[BellB[Length[ctn]], {ctn, Join@@Permutations/@Select[ IntegerPartitions[n], UnsameQ@@#&]}], {n, 0, 10}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0,
BellB[p]*p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 40] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
CROSSREFS
Set partitions are A000110.
Strict compositions are A032020.
Set partitions of binary indices are A050315.
Set partitions of strict partitions are A294617.
Sequence in context: A321655 A336128 A049122 * A321660 A351292 A290240
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 16 2020
STATUS
approved