login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351131
Triangular numbers (A000217) whose second arithmetic derivative (A068346) is also a triangular number.
0
0, 1, 3, 6, 10, 66, 78, 105, 231, 325, 465, 561, 595, 861, 1378, 2211, 2278, 2485, 3081, 3570, 3655, 4278, 4465, 5253, 6441, 6670, 8515, 8778, 9453, 9870, 10011, 10153, 12561, 13530, 15051, 18145, 21115, 21945, 22578, 23005, 25878, 27966, 28441, 40470, 45753
OFFSET
1,3
EXAMPLE
6 = A000217(3), 6'' = 5' = 1 = A000217(1), so 6 is a term.
66 = A000217(11), 66'' = 61' = 1 = A000217(1), so 66 is a term.
325 = A000217(25), 325'' = 155' = 36 = A000217(8), so 325 is a term.
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Table[n*(n + 1)/2, {n, 0, 300}], IntegerQ[Sqrt[8*d[d[#]] + 1]] &] (* Amiram Eldar, Feb 07 2022 *)
PROG
(Magma) tr:=func<m|IsSquare(8*m+1)>; f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [n:n in [d*(d+1) div 2:d in [0..310]]| tr(Floor(f(Floor(f(n)))))];
(PARI) der(n) = my(f=factor(n)); vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
isok(m) = ispolygonal(m, 3) && ispolygonal(der(der(m)), 3); \\ Michel Marcus, Feb 16 2022
(Python)
from itertools import count, islice
from sympy import factorint, integer_nthroot, isprime, nextprime
def istri(n): return integer_nthroot(8*n+1, 2)[1]
def ad(n):
return 0 if n < 2 else sum(n*e//p for p, e in factorint(n).items())
def agen(): # generator of terms
for i in count(0):
t = i*(i+1)//2
if istri(ad(ad(t))):
yield t
print(list(islice(agen(), 45))) # Michael S. Branicky, Feb 16 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Feb 07 2022
STATUS
approved