login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351134
a(n) = Sum_{k=0..n} k! * k^(3*n) * Stirling1(n,k).
4
1, 1, 127, 115028, 383611414, 3407421330934, 66396378581670602, 2493320561997330821496, 164454446238949941359354760, 17769323863754938530919641304080, 2978930835291629440372517431365668448, 741834782450714229554166000654848368247568
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Sum_{k>=0} log(1 + k^3*x)^k.
a(n) ~ c * d^n * n^(4*n + 1/2), where d = 0.358437102792682941192966771107499325675345706113923587904567864366079667... and c = 2.68150179193269103258189978938660205530269361522513... - Vaclav Kotesovec, Feb 04 2022
MATHEMATICA
a[0] = 1; a[n_] := Sum[k! * k^(3*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 12, 0] (* Amiram Eldar, Feb 02 2022 *)
PROG
(PARI) a(n) = sum(k=0, n, k!*k^(3*n)*stirling(n, k, 1));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, log(1+k^3*x)^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 02 2022
STATUS
approved