login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351130
Triangular numbers (A000217) whose arithmetic derivative (A003415) is also a triangular number.
0
0, 1, 3, 21, 351, 43956, 187578, 246753, 570846, 1200475, 4890628, 15671601, 83663580, 442903203, 3776109156, 35358717628, 1060996913571, 2443123072855, 65801068940503, 598914888327003, 1364298098094561
OFFSET
1,3
COMMENTS
Triangular numbers in A229511.
EXAMPLE
21 = A000217(6), 21' = 10 = A000217(4), so 21 is a term.
351 = A000217(26), 351' = 378 = A000217(27), so 351 is a term.
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Table[n*(n + 1)/2, {n, 0, 10^5}], IntegerQ[Sqrt[8*d[#] + 1]] &] (* Amiram Eldar, Feb 07 2022 *)
PROG
(Magma) tr:=func<m|IsSquare(8*m+1)>; f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [n:n in [d*(d+1) div 2:d in [0..90000]]| tr(Floor(f(n)))];
(PARI) lista(nn) = my(t); for (n=0, nn, if (ispolygonal(der(t=n*(n+1)/2), 3), print1(t, ", "))); \\ Michel Marcus, Feb 16 2022
(Python)
from itertools import count, islice
from sympy import factorint, integer_nthroot, isprime, nextprime
def istri(n): return integer_nthroot(8*n+1, 2)[1]
def ad(n):
return 0 if n < 2 else sum(n*e//p for p, e in factorint(n).items())
def agen(): # generator of terms
for i in count(0):
t = i*(i+1)//2
if istri(ad(t)):
yield t
print(list(islice(agen(), 14))) # Michael S. Branicky, Feb 16 2022
CROSSREFS
Intersection of A000217 and A229511.
Cf. A003415.
Sequence in context: A083228 A376619 A052445 * A186271 A320949 A361056
KEYWORD
nonn,more
AUTHOR
Marius A. Burtea, Feb 07 2022
EXTENSIONS
a(20)-a(21) from Michael S. Branicky, Feb 17 2022
STATUS
approved