Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Apr 01 2022 23:47:21
%S 0,1,3,6,10,66,78,105,231,325,465,561,595,861,1378,2211,2278,2485,
%T 3081,3570,3655,4278,4465,5253,6441,6670,8515,8778,9453,9870,10011,
%U 10153,12561,13530,15051,18145,21115,21945,22578,23005,25878,27966,28441,40470,45753
%N Triangular numbers (A000217) whose second arithmetic derivative (A068346) is also a triangular number.
%e 6 = A000217(3), 6'' = 5' = 1 = A000217(1), so 6 is a term.
%e 66 = A000217(11), 66'' = 61' = 1 = A000217(1), so 66 is a term.
%e 325 = A000217(25), 325'' = 155' = 36 = A000217(8), so 325 is a term.
%t d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Table[n*(n + 1)/2, {n, 0, 300}], IntegerQ[Sqrt[8*d[d[#]] + 1]] &] (* _Amiram Eldar_, Feb 07 2022 *)
%o (Magma) tr:=func<m|IsSquare(8*m+1)>; f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [n:n in [d*(d+1) div 2:d in [0..310]]| tr(Floor(f(Floor(f(n)))))];
%o (PARI) der(n) = my(f=factor(n)); vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
%o isok(m) = ispolygonal(m, 3) && ispolygonal(der(der(m)), 3); \\ _Michel Marcus_, Feb 16 2022
%o (Python)
%o from itertools import count, islice
%o from sympy import factorint, integer_nthroot, isprime, nextprime
%o def istri(n): return integer_nthroot(8*n+1, 2)[1]
%o def ad(n):
%o return 0 if n < 2 else sum(n*e//p for p, e in factorint(n).items())
%o def agen(): # generator of terms
%o for i in count(0):
%o t = i*(i+1)//2
%o if istri(ad(ad(t))):
%o yield t
%o print(list(islice(agen(), 45))) # _Michael S. Branicky_, Feb 16 2022
%Y Cf. A000217, A003415, A068346.
%K nonn
%O 1,3
%A _Marius A. Burtea_, Feb 07 2022