|
|
A350305
|
|
a(n) is the constant term in the expansion of Product_{k=1..n} (x^k + 1 + 1/x^k)^n.
|
|
3
|
|
|
1, 1, 13, 1437, 1884211, 24657701475, 3111336932350947, 3710920324904591897521, 41323213770479673319301068309, 4261037235228828189774620497534270303, 4045313784246510024420372971256850718016451185
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the coefficient of x^(n^2 * (n+1)/2) in Product_{k=0..n} (1 + x^k + x^(2*k))^n.
|
|
LINKS
|
|
|
MAPLE
|
f:= n -> coeff(mul(x^k+1+1/x^k, k=1..n)^n, x, 0):
|
|
MATHEMATICA
|
a[n_] := Coefficient[Series[Product[(x^k + 1 + 1/x^k)^n, {k, 1, n}], {x, 0, 0}], x, 0]; Array[a, 11, 0] (* Amiram Eldar, Dec 24 2021 *)
|
|
PROG
|
(PARI) a(n) = polcoef(prod(k=1, n, x^k+1+1/x^k)^n, 0);
(PARI) a(n) = polcoef(prod(k=1, n, 1+x^k+x^(2*k))^n, n^2*(n+1)/2);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|