login
A350304
Maximum number of 1's in an n X n binary matrix without an all-ones 3 X 3 submatrix.
9
1, 4, 8, 13, 20, 26, 33, 42, 49, 60, 69, 80, 92, 105, 120, 128
OFFSET
1,2
COMMENTS
Equivalently, the maximum number of edges in a bipartite graph that is a subgraph of K_{n,n} and has no K_{3,3} induced subgraph.
REFERENCES
W. Sierpiński, Sur un problème concernant un réseau à 36 points, Ann. Soc. Polon. Math., 24: 173-174 (1951).
FORMULA
a(n) = A001198(n) - 1 = n^2 - A350237(n) = n^2 - A347473(n) - 1.
EXAMPLE
Examples of a(3)=8, a(4)=13, a(5)=20, a(6)=26:
x x x x x x x x x x x . x x x x x .
x x x x x x . x x x . x x x x x . x
x x . x x . x x x . x x x x . . x x
x . x x x . x x x x . x . x x
. x x x x . x . x x x
. . x x x x
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Andrew Howroyd, Dec 24 2021
EXTENSIONS
a(14)-a(16) computed from A350237 by Max Alekseyev, Apr 01 2022, Oct 31 2022
STATUS
approved