login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350303
a(n) is the number of ways to partition the set of vertices of a convex (n+14)-gon into 5 nonintersecting polygons.
1
0, 273, 1820, 7140, 21420, 54264, 122094, 251370, 482790, 876645, 1519518, 2532530, 4081350, 6388200, 9746100, 14535612, 21244356, 30489585, 43044120, 59865960, 82131896, 111275472, 149029650, 197474550, 259090650, 336817845, 434120778, 555060870, 704375490, 887564720, 1110986184
OFFSET
0,2
COMMENTS
Equivalently, the number of noncrossing set partitions of an (n+14)-set into 5 blocks with 3 or more elements in each block.
FORMULA
a(n) = (1/2880)*n*(n+1)*(n+2)*(n+3)*(n+11)*(n+12)*(n+13)*(n+14).
G.f.: 7*x*(39 - 91*x + 84*x^2 - 36*x^3 + 6*x^4)/(1 - x)^9. - Stefano Spezia, Dec 26 2021
EXAMPLE
The a(1)=273 solutions are {1,2,3} {4,5,6} {7,8,9} {10,11,12} {13,14,15} with its 3 different orientations and each of the following 18 patterns with its 15 orientations:
{1,2,3} {4,5,15} {6,7,8} {9,10,11} {12,13,14}
{1,2,3} {4,14,15} {5,6,7} {8,9,10} {11,12 13}
{1,2,3} {4,5,6} {7,8,15} {9,10,11} {12 13,14}
{1,2,3} {4,5,15} {6,7,14} {8,9,10} {11,12,13}
{1,2,3} {4,14,15} {5,12,13} {6,7,8} {9,10,11}
{1,2,3} {4,5,15} {6,13,14} {7,8,9} {10,11,12}
{1,2,3} {4,14,15} {5,6,13} {7,8,9} {10,11,12}
{1,2,3} {4,5,15} {6,7,14} {8,9,13} {10,11,12}
{1,2,3} {4,5,15} {6,7,14} {8,12,13} {9,10,11}
{1,2,3} {4,5,15} {6,13,14} {7,8,12} {9,10,11}
{1,2,3} {4,14,15} {5,12,13} {6,7,11} {8,9,10}
{1,2,3} {4,15,8} {5,6,7} {9,10,11} {12,13,14}
{1,2,3} {4,15,8} {5,6,7} {9,13,14} {10,11,12}
{1,2,3} {4,15,8} {5,6,7} {9,10,14} {11,12,13}
{1,2,3} {4,5,15} {6,7,8} {9,10,14} {11,12,13}
{1,2,3} {4,14,15} {5,6,7} {8,12,13} {9,10,11}
{1,2,3} {4,14,15} {5,6,7} {8,9,13} {10,11,12}
{1,2,3} {4,5,15} {6,7,8} {9,13,14} {10,11,12}
In the above, the numbers can be considered to be the partition of a 15-set into 5 blocks or the partition of the vertices of a convex 15-gon into 5 triangles with vertices labeled 1,2,...,15 in order.
a(2)=1820 corresponding to the number of ways to partition the vertices of a 16-gon into 4 triangles and one quadrilateral.
MATHEMATICA
a[n_] := n*(n + 1)*(n + 2)*(n + 3)*(n + 11)*(n + 12)*(n + 13)*(n + 14)/2880; Array[a, 30, 0] (* Amiram Eldar, Dec 26 2021 *)
CROSSREFS
Column k=5 of A350248.
Cf. A350116.
Sequence in context: A028530 A200836 A276980 * A214220 A029567 A028534
KEYWORD
easy,nonn
AUTHOR
Janaka Rodrigo, Dec 24 2021
STATUS
approved