|
EXAMPLE
|
The a(1)=273 solutions are {1,2,3} {4,5,6} {7,8,9} {10,11,12} {13,14,15} with its 3 different orientations and each of the following 18 patterns with its 15 orientations:
{1,2,3} {4,5,15} {6,7,8} {9,10,11} {12,13,14}
{1,2,3} {4,14,15} {5,6,7} {8,9,10} {11,12 13}
{1,2,3} {4,5,6} {7,8,15} {9,10,11} {12 13,14}
{1,2,3} {4,5,15} {6,7,14} {8,9,10} {11,12,13}
{1,2,3} {4,14,15} {5,12,13} {6,7,8} {9,10,11}
{1,2,3} {4,5,15} {6,13,14} {7,8,9} {10,11,12}
{1,2,3} {4,14,15} {5,6,13} {7,8,9} {10,11,12}
{1,2,3} {4,5,15} {6,7,14} {8,9,13} {10,11,12}
{1,2,3} {4,5,15} {6,7,14} {8,12,13} {9,10,11}
{1,2,3} {4,5,15} {6,13,14} {7,8,12} {9,10,11}
{1,2,3} {4,14,15} {5,12,13} {6,7,11} {8,9,10}
{1,2,3} {4,15,8} {5,6,7} {9,10,11} {12,13,14}
{1,2,3} {4,15,8} {5,6,7} {9,13,14} {10,11,12}
{1,2,3} {4,15,8} {5,6,7} {9,10,14} {11,12,13}
{1,2,3} {4,5,15} {6,7,8} {9,10,14} {11,12,13}
{1,2,3} {4,14,15} {5,6,7} {8,12,13} {9,10,11}
{1,2,3} {4,14,15} {5,6,7} {8,9,13} {10,11,12}
{1,2,3} {4,5,15} {6,7,8} {9,13,14} {10,11,12}
In the above, the numbers can be considered to be the partition of a 15-set into 5 blocks or the partition of the vertices of a convex 15-gon into 5 triangles with vertices labeled 1,2,...,15 in order.
a(2)=1820 corresponding to the number of ways to partition the vertices of a 16-gon into 4 triangles and one quadrilateral.
|