OFFSET
0,2
COMMENTS
Equivalently, the number of noncrossing set partitions of an (n+14)-set into 5 blocks with 3 or more elements in each block.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = (1/2880)*n*(n+1)*(n+2)*(n+3)*(n+11)*(n+12)*(n+13)*(n+14).
G.f.: 7*x*(39 - 91*x + 84*x^2 - 36*x^3 + 6*x^4)/(1 - x)^9. - Stefano Spezia, Dec 26 2021
EXAMPLE
The a(1)=273 solutions are {1,2,3} {4,5,6} {7,8,9} {10,11,12} {13,14,15} with its 3 different orientations and each of the following 18 patterns with its 15 orientations:
{1,2,3} {4,5,15} {6,7,8} {9,10,11} {12,13,14}
{1,2,3} {4,14,15} {5,6,7} {8,9,10} {11,12 13}
{1,2,3} {4,5,6} {7,8,15} {9,10,11} {12 13,14}
{1,2,3} {4,5,15} {6,7,14} {8,9,10} {11,12,13}
{1,2,3} {4,14,15} {5,12,13} {6,7,8} {9,10,11}
{1,2,3} {4,5,15} {6,13,14} {7,8,9} {10,11,12}
{1,2,3} {4,14,15} {5,6,13} {7,8,9} {10,11,12}
{1,2,3} {4,5,15} {6,7,14} {8,9,13} {10,11,12}
{1,2,3} {4,5,15} {6,7,14} {8,12,13} {9,10,11}
{1,2,3} {4,5,15} {6,13,14} {7,8,12} {9,10,11}
{1,2,3} {4,14,15} {5,12,13} {6,7,11} {8,9,10}
{1,2,3} {4,15,8} {5,6,7} {9,10,11} {12,13,14}
{1,2,3} {4,15,8} {5,6,7} {9,13,14} {10,11,12}
{1,2,3} {4,15,8} {5,6,7} {9,10,14} {11,12,13}
{1,2,3} {4,5,15} {6,7,8} {9,10,14} {11,12,13}
{1,2,3} {4,14,15} {5,6,7} {8,12,13} {9,10,11}
{1,2,3} {4,14,15} {5,6,7} {8,9,13} {10,11,12}
{1,2,3} {4,5,15} {6,7,8} {9,13,14} {10,11,12}
In the above, the numbers can be considered to be the partition of a 15-set into 5 blocks or the partition of the vertices of a convex 15-gon into 5 triangles with vertices labeled 1,2,...,15 in order.
a(2)=1820 corresponding to the number of ways to partition the vertices of a 16-gon into 4 triangles and one quadrilateral.
MATHEMATICA
a[n_] := n*(n + 1)*(n + 2)*(n + 3)*(n + 11)*(n + 12)*(n + 13)*(n + 14)/2880; Array[a, 30, 0] (* Amiram Eldar, Dec 26 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Janaka Rodrigo, Dec 24 2021
STATUS
approved