login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of ways to partition the set of vertices of a convex (n+14)-gon into 5 nonintersecting polygons.
1

%I #38 Feb 20 2022 20:29:02

%S 0,273,1820,7140,21420,54264,122094,251370,482790,876645,1519518,

%T 2532530,4081350,6388200,9746100,14535612,21244356,30489585,43044120,

%U 59865960,82131896,111275472,149029650,197474550,259090650,336817845,434120778,555060870,704375490,887564720,1110986184

%N a(n) is the number of ways to partition the set of vertices of a convex (n+14)-gon into 5 nonintersecting polygons.

%C Equivalently, the number of noncrossing set partitions of an (n+14)-set into 5 blocks with 3 or more elements in each block.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F a(n) = (1/2880)*n*(n+1)*(n+2)*(n+3)*(n+11)*(n+12)*(n+13)*(n+14).

%F G.f.: 7*x*(39 - 91*x + 84*x^2 - 36*x^3 + 6*x^4)/(1 - x)^9. - _Stefano Spezia_, Dec 26 2021

%e The a(1)=273 solutions are {1,2,3} {4,5,6} {7,8,9} {10,11,12} {13,14,15} with its 3 different orientations and each of the following 18 patterns with its 15 orientations:

%e {1,2,3} {4,5,15} {6,7,8} {9,10,11} {12,13,14}

%e {1,2,3} {4,14,15} {5,6,7} {8,9,10} {11,12 13}

%e {1,2,3} {4,5,6} {7,8,15} {9,10,11} {12 13,14}

%e {1,2,3} {4,5,15} {6,7,14} {8,9,10} {11,12,13}

%e {1,2,3} {4,14,15} {5,12,13} {6,7,8} {9,10,11}

%e {1,2,3} {4,5,15} {6,13,14} {7,8,9} {10,11,12}

%e {1,2,3} {4,14,15} {5,6,13} {7,8,9} {10,11,12}

%e {1,2,3} {4,5,15} {6,7,14} {8,9,13} {10,11,12}

%e {1,2,3} {4,5,15} {6,7,14} {8,12,13} {9,10,11}

%e {1,2,3} {4,5,15} {6,13,14} {7,8,12} {9,10,11}

%e {1,2,3} {4,14,15} {5,12,13} {6,7,11} {8,9,10}

%e {1,2,3} {4,15,8} {5,6,7} {9,10,11} {12,13,14}

%e {1,2,3} {4,15,8} {5,6,7} {9,13,14} {10,11,12}

%e {1,2,3} {4,15,8} {5,6,7} {9,10,14} {11,12,13}

%e {1,2,3} {4,5,15} {6,7,8} {9,10,14} {11,12,13}

%e {1,2,3} {4,14,15} {5,6,7} {8,12,13} {9,10,11}

%e {1,2,3} {4,14,15} {5,6,7} {8,9,13} {10,11,12}

%e {1,2,3} {4,5,15} {6,7,8} {9,13,14} {10,11,12}

%e In the above, the numbers can be considered to be the partition of a 15-set into 5 blocks or the partition of the vertices of a convex 15-gon into 5 triangles with vertices labeled 1,2,...,15 in order.

%e a(2)=1820 corresponding to the number of ways to partition the vertices of a 16-gon into 4 triangles and one quadrilateral.

%t a[n_] := n*(n + 1)*(n + 2)*(n + 3)*(n + 11)*(n + 12)*(n + 13)*(n + 14)/2880; Array[a, 30, 0] (* _Amiram Eldar_, Dec 26 2021 *)

%Y Column k=5 of A350248.

%Y Cf. A350116.

%K easy,nonn

%O 0,2

%A _Janaka Rodrigo_, Dec 24 2021