login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265382
Total number of ON (black) cells after n iterations of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.
1
1, 4, 8, 13, 20, 27, 37, 46, 59, 70, 86, 99, 118, 133, 155, 172, 197, 216, 244, 265, 296, 319, 353, 378, 415, 442, 482, 511, 554, 585, 631, 664, 713, 748, 800, 837, 892, 931, 989, 1030, 1091, 1134, 1198, 1243, 1310, 1357, 1427, 1476, 1549, 1600, 1676, 1729
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Dec 07 2015 and Apr 18 2019: (Start)
a(n) = 1/16*(10*n^2+2*(-1)^n*n+34*n-3*(-1)^n+19).
a(n) = 1/16*(10*n^2+36*n+16) for n even.
a(n) = 1/16*(10*n^2+32*n+22) for n odd.
a(n) = 2*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>4.
G.f.: (1+3*x+2*x^2-x^3) / ((1-x)^3*(1+x)^2).
(End)
EXAMPLE
From Michael De Vlieger, Dec 09 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row, and the running total up to that row:
1 = 1 -> 1
1 1 1 = 3 -> 4
1 1 1 . 1 = 4 -> 8
1 1 1 . . 1 1 = 5 -> 13
1 1 1 . 1 1 1 . 1 = 7 -> 20
1 1 1 . . 1 1 . . 1 1 = 7 -> 27
1 1 1 . 1 1 1 . 1 1 1 . 1 = 10 -> 37
1 1 1 . . 1 1 . . 1 1 . . 1 1 = 9 -> 46
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 = 13 -> 59
1 1 1 . . 1 1 . . 1 1 . . 1 1 . . 1 1 = 11 -> 70
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 = 16 -> 86
1 1 1 . . 1 1 . . 1 1 . . 1 1 . . 1 1 . . 1 1 = 13 -> 99
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 = 19 -> 118
(End)
MATHEMATICA
rule = 158; rows = 30; Table[Total[Take[Table[Total[Table[Take[CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}][[k]], {rows-k+1, rows+k-1}], {k, 1, rows}][[k]]], {k, 1, rows}], k]], {k, 1, rows}]
Accumulate[Count[#, n_ /; n == 1] & /@ CellularAutomaton[158, {{1}, 0}, 51]] (* Michael De Vlieger, Dec 09 2015 *)
CROSSREFS
Cf. A071037.
Sequence in context: A312218 A350304 A368612 * A056738 A170907 A143978
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 07 2015
STATUS
approved