OFFSET
3,2
COMMENTS
Related to Zarankiewicz's problem k_3(n) (cf. A001198 and other crossrefs), which asks the converse: how many 1's must be in an n X n {0,1}-matrix in order to guarantee the existence of an all-ones 3 X 3 submatrix. This complementarity leads to the given formula which was used to compute the given values.
FORMULA
a(n) = n^2 - A001198(n).
a(n) = A350237(n) - 1. - Andrew Howroyd, Dec 24 2021
a(n) = n^2 - A350304(n) - 1. - Max Alekseyev, Oct 31 2022
EXAMPLE
For n = 3, there must not be any nonzero entry in an n X n = 3 X 3 matrix, if one wants a 3 X 3 zero submatrix, whence a(3) = 0.
For n = 4, having at most 2 nonzero entries in the n X n matrix guarantees that there is a 3 X 3 zero submatrix (delete, e.g., the row which has the first nonzero entry, then the column with the remaining nonzero entry, if any), but if one allows 3 nonzero entries and they are placed on the diagonal, then there is no 3 X 3 zero submatrix. Hence, a(4) = 2.
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
M. F. Hasler, Sep 28 2021
EXTENSIONS
a(11)-a(13) from Andrew Howroyd, Dec 24 2021
a(14)-a(16) computed from A350237 by Max Alekseyev, Apr 01 2022, Oct 31 2022
STATUS
approved