login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225602
a(n) = A002426(n^2), where A002426 is the central trinomial coefficients.
3
1, 1, 19, 3139, 5196627, 82176836301, 12159131877715993, 16639279789182494873661, 209099036316263774148543463251, 24017537903429183163390175566336055657, 25134265191388162956642519120384003897467908119, 239089990313305548946878880624659134220897530949847409821
OFFSET
0,3
LINKS
FORMULA
Logarithmic derivative of A225604 (ignoring the initial term of this sequence).
a(n) = Sum_{k=0..floor(n^2/2)} binomial(n^2, k) * binomial(n^2-k, k).
EXAMPLE
L.g.f.: L(x) = x + 19*x^2/2 + 3139*x^3/3 + 5196627*x^4/4 + 82176836301*x^5/5 + ...
where exponentiation is an integer series:
exp(L(x)) = 1 + x + 10*x^2 + 1056*x^3 + 1300253*x^4 + 16436676927*x^5 + ... + A225604(n)*x^n + ...
MATHEMATICA
Table[Sum[Binomial[n^2, k]*Binomial[n^2 - k, k], {k, 0, Floor[n^2/2]}], {n, 0, 50}] (* G. C. Greubel, Feb 27 2017 *)
PROG
(PARI) {a(n)=sum(k=0, n^2\2, binomial(n^2, k)*binomial(n^2-k, k))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A196541 A221296 A287938 * A195756 A125197 A375090
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 03 2013
STATUS
approved