OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..45
FORMULA
Logarithmic derivative of A225604 (ignoring the initial term of this sequence).
a(n) = Sum_{k=0..floor(n^2/2)} binomial(n^2, k) * binomial(n^2-k, k).
EXAMPLE
L.g.f.: L(x) = x + 19*x^2/2 + 3139*x^3/3 + 5196627*x^4/4 + 82176836301*x^5/5 + ...
where exponentiation is an integer series:
exp(L(x)) = 1 + x + 10*x^2 + 1056*x^3 + 1300253*x^4 + 16436676927*x^5 + ... + A225604(n)*x^n + ...
MATHEMATICA
Table[Sum[Binomial[n^2, k]*Binomial[n^2 - k, k], {k, 0, Floor[n^2/2]}], {n, 0, 50}] (* G. C. Greubel, Feb 27 2017 *)
PROG
(PARI) {a(n)=sum(k=0, n^2\2, binomial(n^2, k)*binomial(n^2-k, k))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 03 2013
STATUS
approved