login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A002426(n^2), where A002426 is the central trinomial coefficients.
3

%I #13 Feb 28 2017 22:35:50

%S 1,1,19,3139,5196627,82176836301,12159131877715993,

%T 16639279789182494873661,209099036316263774148543463251,

%U 24017537903429183163390175566336055657,25134265191388162956642519120384003897467908119,239089990313305548946878880624659134220897530949847409821

%N a(n) = A002426(n^2), where A002426 is the central trinomial coefficients.

%H G. C. Greubel, <a href="/A225602/b225602.txt">Table of n, a(n) for n = 0..45</a>

%F Logarithmic derivative of A225604 (ignoring the initial term of this sequence).

%F a(n) = Sum_{k=0..floor(n^2/2)} binomial(n^2, k) * binomial(n^2-k, k).

%e L.g.f.: L(x) = x + 19*x^2/2 + 3139*x^3/3 + 5196627*x^4/4 + 82176836301*x^5/5 + ...

%e where exponentiation is an integer series:

%e exp(L(x)) = 1 + x + 10*x^2 + 1056*x^3 + 1300253*x^4 + 16436676927*x^5 + ... + A225604(n)*x^n + ...

%t Table[Sum[Binomial[n^2, k]*Binomial[n^2 - k, k], {k, 0, Floor[n^2/2]}], {n,0,50}] (* _G. C. Greubel_, Feb 27 2017 *)

%o (PARI) {a(n)=sum(k=0, n^2\2, binomial(n^2, k)*binomial(n^2-k, k))}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A225604, A002426.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Aug 03 2013