login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225601
a(n) = A000172(n)^n, where A000172(n) = Sum_{k=0..n} binomial(n,k)^3 forms the Franel numbers.
0
1, 2, 100, 175616, 14331920656, 57921784155180032, 12255108779062338588246016, 140335244044685299494850396160000000, 89108073653130217591789722357691598453905367296, 3194443255354428321611505213481524389463527731906791539474432
OFFSET
0,2
FORMULA
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log( Sum_{n>=0} A216354(n)*x^n ).
EXAMPLE
L.g.f.: L(x) = 2*x + 100*x^2/2 + 175616*x^3/3 + 14331920656*x^4/4 + 57921784155180032*x^5/5 +...
where exponentiation is an integer series:
exp(L(x)) = 1 + 2*x + 52*x^2 + 58640*x^3 + 3583098592*x^4 + 11584364000042912*x^5 +...+ A216354(n)*x^n +...
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^3)^n}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A092699 A121975 A102188 * A332567 A126135 A016034
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 03 2013
STATUS
approved