login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225604
G.f.: exp( Sum_{n>=1} A002426(n^2) * x^n/n ), where A002426 is the central trinomial coefficients.
1
1, 1, 10, 1056, 1300253, 16436676927, 2026538428535847, 2377041996570919354629, 26137381916593225072659360863, 2668615348740645885804068311893052895, 2513426521807431879643802805359800329740903335, 21735453667359385540995804455408000917620356989063370267
OFFSET
0,3
FORMULA
Logarithmic derivative yields A225602.
EXAMPLE
G.f.: A(x) = A(x) = 1 + x + 10*x^2 + 1056*x^3 + 1300253*x^4 + 16436676927*x^5 +...
where
log(A(x)) = x + 19*x^2/2 + 3139*x^3/3 + 5196627*x^4/4 + 82176836301*x^5/5 +...+ A225602(n)*x^n/n +...
PROG
(PARI) {A002426(n)=sum(k=0, n, binomial(n, k)*binomial(k, n-k))}
{a(n)=polcoeff(exp(sum(m=1, n+1, A002426(m^2)*x^m/m) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A103623 A145184 A004810 * A208560 A263311 A190945
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Aug 03 2013
STATUS
approved