login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350236
a(n) is the sum of the entries in an n X n X n 3D matrix whose elements start at 1 in the corner cells and increase by 1 with each step towards the center.
1
1, 8, 54, 160, 425, 864, 1666, 2816, 4617, 7000, 10406, 14688, 20449, 27440, 36450, 47104, 60401, 75816, 94582, 116000, 141561, 170368, 204194, 241920, 285625, 333944, 389286, 450016, 518897, 594000, 678466, 770048, 872289, 982600, 1104950, 1236384, 1381321
OFFSET
1,2
COMMENTS
The 2D version of this problem is discussed in A317614.
FORMULA
a(n) = (3/4)*n^2 * (n^2 - 2/3*n + (n mod 2)).
From Stefano Spezia, May 19 2022: (Start)
O.g.f.: x*(1 + 6*x + 36*x^2 + 42*x^3 + 45*x^4 + 12*x^5 + 2*x^6)/((1 - x)^5*(1 + x)^3).
E.g.f.: x*((4 + 15*x + 16*x^2 + 3*x^3)*cosh(x) + (1 + 18*x + 16*x^2 + 3*x^3)*sinh(x))/4.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5)- 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 8. (End)
EXAMPLE
For n=3: we have the following 3D matrix: (sliced for each Z surface)
(z=1): 1 2 1
2 3 2
1 2 1
(z=2): 2 3 2
3 4 3
2 3 2
(z=3): 1 2 1
2 3 2
1 2 1
The sum of all elements is: (3/4)*n^2 * (n^2 - 2/3*n + (n mod 2)) = 54.
MAPLE
a:=n->(3/4)*n^2 * (n^2 - (2/3)*n + modp(n, 2)): seq(a(n), n=1..50);
MATHEMATICA
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {1, 8, 54, 160, 425, 864, 1666, 2816}, 35] (* Stefano Spezia, May 19 2022 *)
PROG
(Python)
for n in range(1, nmax):
sum = round(3/4*n**2 * (n**2 - 2/3*n + n % 2))
print(sum, end=', ')
CROSSREFS
Cf. A317614.
Sequence in context: A180095 A234955 A189393 * A254951 A085537 A085540
KEYWORD
nonn,easy
AUTHOR
Saeed Barari, Dec 21 2021
EXTENSIONS
Python program and a(23), a(34) corrected by Georg Fischer, Sep 30 2022
STATUS
approved