The Grand Sum Of $n \times n \times n$ matrix whose elements start from 1 and get higher, the more they're at the center

When dealing with a 3D matrix of elements, we sometimes need to calculate the elements in a way that the closer they are to center, the more they are respected; then we can use that for creating 3D art or equation.

So What is such matrix anyway?

The matrix is made of 3 dimensions of length n.

Let's assume n is 5; Then if it were 1D, it would look like

[1	2	3	2	1]

And if it were 2D, it would look like

1	г1	2	3	2	ן1
	2	3	4	3	2
	3	4	5	4	3
	2	3	4	3	2
	L1	2	3	2	1

The grand sum of the 1D matrix would be $\underline{A002620 - OEIS}$, and the 2D matrix would be $\underline{A317614 - OEIS}$, but for the 3D, there's no sequence registered at the OEIS.

So what does the 3D matric look like?

Since it cannot be brought up to a 2D paper, it may be hard to show the matrix.

If we divide the $i \times j \times k$ 3D matrix M to a 1D array A of $i \times j$ Matrices, with array length of k, we can then show what the 3D matrix of $M_{xyz} = x_yz$ looks like: (Let's say i = 2, j = 3, k = 3)

(z=1):	$\begin{bmatrix} 1_{-}1_{-}1 \\ 1_{-}2_{-}1 \\ 1_{-}3_{-}1 \end{bmatrix}$	$2_{-1_{-1}} \\ 2_{-2_{-1}} \\ 2_{-3_{-1}} \end{bmatrix}$
(z=2):	$\begin{bmatrix} 1_1_2\\ 1_2_2\\ 1_3_2 \end{bmatrix}$	2_1_2 2_2_2 2_3_2]
(z=3):	$\begin{bmatrix} 1_1_3 \\ 1_2_3 \\ 1_3_3 \end{bmatrix}$	2_1_3 2_2_3 2_3_3

We can see that for the third dimension (z), I wrote a new 2D matrix for the layer of the matrix where z is for example 1, or 2 etc.

The 3D Matrix whose elements start from 1 and get higher, the more they're at the center:

It would simply look like this, given n = 3:

	1	2	1	
z = 1:	2	3	2	
	l1	2	1	
	[2	3	2]	
z = 2:	3	4	3	
	2	3	2	
	[1	2	[1	
z = 3:	2	3	2	
	l1	2	1	

Or if we demonstrate it for a $n \times n \times n$ cubes whose *transparency* is affected by the element value in matrix in a way that the central element is fully opaque, we'll have this shape:

How do we calculate the big sum of such matrix?

We can see that for each layer l_i ("layer l_i " being a 2D matrix cut of the 3D matrix where z = i), the big sum of the l_i is $l_{i\pm 1} \pm n^2$:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 3 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix} = 15$$

We can see that if we know what the grand sum of l_1 is, we'll have an idea of the grand sum for the other layers. Let's call the "grand sum of l_i " as S_i for sake of simplicity. Now we want to know $\sum_{i=1}^n S_i$.

Here's a python code that generates the matrix and the grand sum, given the value *n*:

```
n = int(input('n : '))
sum = 0
h = (n+1)/2
cent = n * 1.5 - 0.5
print('h is ', h)
for z in range(1, n+1):
    for y in range(1, n+1):
        for x in range(1, n+1):
            d = abs(x - h) + abs(y - h) + abs(z - h)
            r = int(cent - d)
            sum += r
            print(r, end =' ')
            print('-'*10)
print('sum : ', sum)
```

Let's take a look at a bigger odd n. For example n = 7:

$$\begin{bmatrix} \dots \end{bmatrix} S_1 = S_1 \\ \begin{bmatrix} \dots \end{bmatrix} S_2 = S_1 + n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_3 = S_1 + 2n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_4 = S_1 + 3n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_5 = S_1 + 2n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_5 = S_1 + 2n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_6 = S_1 + n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_7 = S_1$$

If we take the center layer l_4 out, we'll have

$$\begin{pmatrix} S_{1} \\ S_{1} + n^{2} \\ S_{1} + 2n^{2} \\ S_{2} + 3n^{2} \\ S_{1} + 2n^{2} \\ S_{1} + n^{2} \\ S_{1} + n^{2} \\ S_{1} \end{pmatrix} \rightarrow 2 \times \begin{pmatrix} S_{1} \\ S_{1} + n^{2} \\ S_{1} + 2n^{2} \end{pmatrix}$$

Which means, if *n* is odd:

$$\begin{split} \sum_{i=1}^{n} S_{1} &= 2 \times \left(\sum_{i=1}^{\frac{n-1}{2}} S_{i} \right) + S_{\frac{n+1}{2}} \\ &= 2 \times \left(\sum_{i=1}^{\frac{n-1}{2}} (S_{1} + (i-1).n^{2}) \right) + \left(S_{1} + \frac{n-1}{2}n^{2} \right) \\ &= 2 \times \left(\frac{n-1}{2} S_{1} + \sum_{i=1}^{\frac{n-1}{2}} ((i-1).n^{2}) \right) + \left(S_{1} + \frac{n-1}{2}n^{2} \right) \\ &= (n-1)S_{1} + \left(2 \times \sum_{i=1}^{\frac{n-1}{2}} ((i-1).n^{2}) \right) + \left(S_{1} + \frac{n-1}{2}n^{2} \right) \\ &= n.S_{1} + \left(2 \times \sum_{i=1}^{\frac{n-1}{2}} ((i-1).n^{2}) \right) + \frac{n^{3}-n^{2}}{2} \end{split}$$

$$= n.S_{1} + \left(2n^{2} \times \sum_{i=1}^{\frac{n-1}{2}} (i-1)\right) + \frac{n^{3} - n^{2}}{2}$$
$$= n.S_{1} + \left(2n^{2} \times \sum_{i=1}^{\frac{n-3}{2}} i\right) + \frac{n^{3} - n^{2}}{2}$$
$$= n.S_{1} + \left(2n^{2} \times \left(\frac{n-1}{2}\right)\left(\frac{n-3}{4}\right)\right) + \frac{n^{3} - n^{2}}{2}$$
$$= n.S_{1} + \left(\frac{n^{4} - 4n^{3} + 3n^{2}}{4}\right) + \frac{n^{3} - n^{2}}{2}$$
$$= n.S_{1} + \frac{n^{4} - 2n^{3} + n^{2}}{4}$$

And S_1 is $\frac{n^3+n(n \mod 2)}{2}$ based on A317614 - OEIS, and in case of *n* being odd, we can conclude $S_1 = \frac{n^3+n}{2}$, so:

$$\begin{split} &\sum_{i=1}^{n} S_{1} \\ &= n.S_{1} + \frac{n^{4} - 2n^{3} + n^{2}}{4} \\ &= \frac{n^{4} + n^{2}}{2} + \frac{n^{4} - 2n^{3} + n^{2}}{4} \\ &= \frac{3n^{4} - 2n^{3} + 3n^{2}}{4} \\ &= \frac{3n^{2}}{4} \left(n^{2} - \frac{2}{3}n + 1\right). \end{split}$$

Now that the function for every odd n is solved, let's take a look at how it's like when n is even, for example when n = 6:

$$\begin{bmatrix} \dots \end{bmatrix} S_1 = S_1 \\ \begin{bmatrix} \dots \end{bmatrix} S_2 = S_1 + n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_3 = S_1 + 2n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_4 = S_1 + 2n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_5 = S_1 + n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_5 = S_1 + n^2 \\ \begin{bmatrix} \dots \end{bmatrix} S_6 = S_1 \end{bmatrix}$$

It's symmetric along the central non-existing S , in this case $\mathcal{S}_{3.5}$:

$$\begin{pmatrix} S_1\\S_2\\S_3\\S_4\\S_5\\S_6 \end{pmatrix} = \begin{pmatrix} S_1\\S_1+n^2\\S_1+2n^2\\S_1+2n^2\\S_1+n^2\\S_1 \end{pmatrix} \to 2 \times \begin{pmatrix} S_1\\S_1\\S_1+n^2\\S_1+2n^2 \end{pmatrix}$$

So we can conclude that if *n* is even, we'll have:

$$\sum_{i=1}^{n} S_i = 2 \times \sum_{i=1}^{\frac{n}{2}} S_i$$
$$= 2 \times \sum_{i=1}^{\frac{n}{2}} (S_1 + (i-1)n^2)$$

$$= 2 \times \left(\frac{n}{2}S_1 + n^2 \sum_{i=1}^{\frac{n}{2}} (i-1)\right)$$

$$= 2 \times \left(\frac{n}{2}S_1 + n^2 \sum_{i=1}^{\frac{n-2}{2}} i\right)$$

$$= 2 \times \left(\frac{n}{2}S_1 + n^2 \times \frac{n}{2} \times \frac{n-2}{4}\right)$$

$$= 2 \times \left(\frac{n}{2}S_1 + \frac{n^4 - 2n^3}{4}\right)$$

$$= n.S_1 + \frac{n^4 - 2n^3}{2}$$

placing $S_1 = \frac{A317614 - OEIS}{4}$:
$$= \frac{n^4}{2} + \frac{n^4 - 2n^3}{4}$$

$$= \frac{n}{2} + \frac{n}{4}$$
$$= \frac{3n^4 - 2n^3}{4}$$
$$= \frac{3}{4}n^2 \left(n^2 - \frac{2}{3}n\right)$$

Hence we can conclude that for any n, it's:

$$\frac{3}{4}n^2\left(n^2 - \frac{2}{3}n + (n \bmod 2)\right).$$

First 20 elements of this series:

8, 54, 160, 425, 864, 1666, 2816, 4617, 7000, 10406, 14688, 20449, 27440, 36450, 47104, 60401, 75816, 94582, 116000

Here's a little python code that generates the series :