The Grand Sum Of n X n X n matrix whose elements start from 1 and get
higher, the more they're at the center

When dealing with a 3D matrix of elements, we sometimes need to calculate the elements in a way that the closer they are to
center, the more they are respected; then we can use that for creating 3D art or equation.

So What is such matrix anyway?

The matrix is made of 3 dimensions of length n.

Let’s assume n is 5; Then if it were 1D, it would look like
[1

And if it were 2D, it would look like

N WA W

U S W

w

N WdH Wi

The grand sum of the 1D matrix would be A002620 - OEIS , and the 2D matrix would be A317614 - OEIS, but for the 3D,

there’s no sequence registered at the OEIS.

So what does the 3D matric look like?

Since it cannot be brought up to a 2D paper, it may be hard to show the matrix.

If we divide the i X j X k 3D matrix M to a 1D array A of i X j Matrices , with array length of k, we can then show what the 3D
matrix of M,,,, = x_y_z looks like: (Let’ssay i = 2,j =3,k = 3)

(z=1):

(z=2):

(z=3):

|

|

|

W N = W N = W N =

Ll
=

w w w NN DN

w N = w N = w N =

NNN NNN NNN
e NNN 2E2E

We can see that for the third dimension (z), | wrote a new 2D matrix for the layer of the matrix where z is for example 1, or 2 etc.

The 3D Matrix whose elements start from 1 and get higher, the more they're at the center:

It would simply look like this, given n = 3:
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https://oeis.org/A002620
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Or if we demonstrate it for an X n X n cubes whose transparency is affected by the element value in matrix in a way that the
central element is fully opaque, we’ll have this shape:
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How do we calculate the big sum of such matrix?

We can see that for each layer [; ( “layer [;” being a 2D matrix cut of the 3D matrix where z = i), the big sum of the [; is [;1; *

n?:
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We can see that if we know what the grand sum of [; is, we’ll have an idea of the grand sum for the other layers. Let’s call the
“grand sum of [;” as S; for sake of simplicity. Now we want to know Y.7-; S; .



Here’s a python code that generates the matrix and the grand sum, given the value n:

n = int(input('n : '))
sum = 0
h = (n+1)/2
cent = n * 1.5 - 0.5
print('h is ', h)
for z in range(l, n+l):
for y in range(l, n+1):
for x in range(l, n+1):
d = abs(x - h) + absCy - h) + abs(z - h)
r = int(cent - d)
sum += r
print(r, end =' ')
print()
print('-'*10)
print('sum : ', sum)

Let’s take a look at a bigger odd n. For example n = 7:

[..151=5;
[...1S, =S, +n?
[...1S5 = S; + 2n?
[...1S, = S; + 3n?
[..]Ss = S; + 2n?
[...1S¢ = S; + n?
[..1S,=35;
If we take the center layer [, out, we’ll have
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Which means, if n is odd:
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And S; is M based on A317614 - OEIS, and in case of n being odd, we can conclude S; = %
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Now that the function for every odd n is solved, let’s take a look at how it’s like when n is even, for example when n = 6:

[..151=5;
[...1S, =S, +n?
[...1S5 = S; + 2n?
[...1S, = Sy + 2n?
[...]Ss = 51 + nz
[---]56 =5
It’s symmetric along the central non-existing S , in this case Sz 5:
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So we can conclude that if n is even, we’ll have:
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placing S; = A317614 - OEIS :
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Hence we can conclude that for any n, it’s:
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First 20 elements of this series:

8, 54, 160, 425, 864, 1666, 2816, 4617, 7000, 10406, 14688, 20449, 27440, 36450, 47104, 60401,
75816, 94582, 116000

Here’s a little python code that generates the series :

import math
max = int(input('range : '))
make_plot = 'y' in input('Make plot?[Y/N]').Llower()
def f(n):
r = 0.75%n**2x(n**2 - 2/3*n + n % 2)
return int(r)
seq = []
n = max
for n in range(2, max+1):
sum = f(n)
seq.append(sum)
print(sum, end=', ')
if make_plot:
from matplotlib.pyplot import plot, show
plot(seq)
show()
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