> The Grand Sum Of $n \times n \times n$ matrix whose elements start from 1 and get higher, the more they're at the center

When dealing with a 3D matrix of elements, we sometimes need to calculate the elements in a way that the closer they are to center, the more they are respected; then we can use that for creating 3D art or equation.

So What is such matrix anyway?

The matrix is made of 3 dimensions of length n.
Let's assume n is 5 ; Then if it were 1D, it would look like

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & 1
\end{array}\right]
$$

And if it were 2D, it would look like
$\left[\begin{array}{lllll}1 & 2 & 3 & 2 & 1 \\ 2 & 3 & 4 & 3 & 2 \\ 3 & 4 & 5 & 4 & 3 \\ 2 & 3 & 4 & 3 & 2 \\ 1 & 2 & 3 & 2 & 1\end{array}\right]$

The grand sum of the 1D matrix would be A002620-OEIS , and the 2D matrix would be A317614-OEIS, but for the 3D, there's no sequence registered at the OEIS.

So what does the 3D matric look like?

Since it cannot be brought up to a 2D paper, it may be hard to show the matrix.
If we divide the $i \times j \times k$ 3D matrix M to a 1D array A of $i \times j$ Matrices, with array length of k, we can then show what the 3D matrix of $M_{x y z}=x_{-} y_{-} z$ looks like: (Let's say $i=2, j=3, k=3$)

$(\mathrm{z}=1):$	$\left[\begin{array}{ll}1 _1 _1 & 2 _1 _1 \\ 1 _2 _1 & 2 _2 _1 \\ 1 _3 _1 & 2 _3 _1\end{array}\right]$
$(\mathrm{z}=2):$	$\left[\begin{array}{ll}1 _1 _2 & 2 _1 _2 \\ 1 _2 _2 & 2 _2 \\ 1 _3 & 2 _3 \\ 1 _2 & 2 _3\end{array}\right]$
$(\mathrm{z}=3):$	$\left[\begin{array}{ll}1 _1 _3 & 2 _1 _3 \\ 1 _2 _3 & 2 _2 _3 \\ 1 _3 _3 & 2 _3 _3\end{array}\right]$

We can see that for the third dimension (z), I wrote a new 2D matrix for the layer of the matrix where z is for example 1 , or 2 etc.
The 3D Matrix whose elements start from 1 and get higher, the more they're at the center:
It would simply look like this, given $n=3$:

$\mathrm{z}=1:$	$\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{array}\right]$
$\mathrm{z}=2:$	$\left[\begin{array}{lll}2 & 3 & 2 \\ 3 & 4 & 3 \\ 2 & 3 & 2\end{array}\right]$
$\mathrm{z}=3:$	$\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{array}\right]$

Or if we demonstrate it for a $n \times n \times n$ cubes whose transparency is affected by the element value in matrix in a way that the central element is fully opaque, we'll have this shape:

How do we calculate the big sum of such matrix?

We can see that for each layer l_{i} ("layer l_{i} " being a 2D matrix cut of the 3D matrix where $z=i$), the big sum of the l_{i} is $l_{i \pm 1} \pm$ n^{2} :

$$
\begin{aligned}
& \\
& {\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 1
\end{array}\right]=15} \\
& {\left[\begin{array}{lll}
2 & 3 & 2 \\
3 & 4 & 3 \\
2 & 3 & 2
\end{array}\right]=15+3^{2}} \\
& {\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 1
\end{array}\right]=15}
\end{aligned}
$$

We can see that if we know what the grand sum of l_{1} is, we'll have an idea of the grand sum for the other layers. Let's call the "grand sum of l_{i} " as S_{i} for sake of simplicity. Now we want to know $\sum_{i=1}^{n} S_{i}$.

Here's a python code that generates the matrix and the grand sum, given the value n :
$\mathrm{n}=\operatorname{int}(\operatorname{input}(\mathrm{n}$: ' $)$)
sum $=0$
$h=(n+1) / 2$
cent $=n * 1.5-0.5$
print('h is ', h)
for z in range $(1, n+1)$:
for y in range $(1, n+1)$:
for x in range $(1, n+1$).
$d=a b s(x-h)+a b s(y-h)+a b s(z-h)$
$r=$ int (cent - d)
sum $+=r$
print $(r$, end $=1$ ')
print()
print($\left.{ }^{\prime}-1 * 10\right)$
print('sum : ', sum)

Let's take a look at a bigger odd n. For example $n=7$:

$$
\begin{aligned}
& {[\ldots] S_{1}=S_{1}} \\
& {[\ldots] S_{2}=S_{1}+n^{2}} \\
& {[\ldots] S_{3}=S_{1}+2 n^{2}} \\
& {[\ldots] S_{4}=S_{1}+3 n^{2}} \\
& {[\ldots] S_{5}=S_{1}+2 n^{2}} \\
& {[\ldots] S_{6}=S_{1}+n^{2}} \\
& {[\ldots] S_{7}=S_{1}}
\end{aligned}
$$

If we take the center layer l_{4} out, we'll have

$$
\left(\begin{array}{c}
S_{1} \\
S_{1}+n^{2} \\
S_{1}+2 n^{2} \\
S_{1}+3 n^{2} \\
S_{1}+2 n^{2} \\
S_{1}+n^{2} \\
S_{1}
\end{array}\right) \rightarrow 2 \times\left(\begin{array}{c}
S_{1} \\
S_{1}+n^{2} \\
S_{1}+2 n^{2}
\end{array}\right)
$$

Which means, if n is odd:

$$
\begin{aligned}
& \sum_{i=1}^{n} S_{1}=2 \times\left(\sum_{i=1}^{\frac{n-1}{2}} S_{i}\right)+S_{\frac{n+1}{2}} \\
& =2 \times\left(\sum_{i=1}^{\frac{n-1}{2}}\left(S_{1}+(i-1) \cdot n^{2}\right)\right)+\left(S_{1}+\frac{n-1}{2} n^{2}\right) \\
& =2 \times\left(\frac{n-1}{2} S_{1}+\sum_{i=1}^{\frac{n-1}{2}}\left((i-1) \cdot n^{2}\right)\right)+\left(S_{1}+\frac{n-1}{2} n^{2}\right) \\
& =(n-1) S_{1}+\left(2 \times \sum_{i=1}^{\frac{n-1}{2}}\left((i-1) \cdot n^{2}\right)\right)+\left(S_{1}+\frac{n-1}{2} n^{2}\right) \\
& =n . S_{1}+\left(2 \times \sum_{i=1}^{\frac{n-1}{2}}\left((i-1) \cdot n^{2}\right)\right)+\frac{n^{3}-n^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =n . S_{1}+\left(2 n^{2} \times \sum_{i=1}^{\frac{n-1}{2}}(i-1)\right)+\frac{n^{3}-n^{2}}{2} \\
& =n . S_{1}+\left(2 n^{2} \times \sum_{i=1}^{\frac{n-3}{2}} i\right)+\frac{n^{3}-n^{2}}{2} \\
& =n . S_{1}+\left(2 n^{2} \times\left(\frac{n-1}{2}\right)\left(\frac{n-3}{4}\right)\right)+\frac{n^{3}-n^{2}}{2} \\
& =n . S_{1}+\left(\frac{n^{4}-4 n^{3}+3 n^{2}}{4}\right)+\frac{n^{3}-n^{2}}{2} \\
& =n . S_{1}+\frac{n^{4}-2 n^{3}+n^{2}}{4}
\end{aligned}
$$

And S_{1} is $\frac{n^{3}+n(n \bmod 2)}{2}$ based on A317614-OEIS, and in case of n being odd, we can conclude $S_{1}=\frac{n^{3}+n}{2}$, so:

$$
\begin{aligned}
& \sum_{i=1}^{n} S_{1} \\
& =n \cdot S_{1}+\frac{n^{4}-2 n^{3}+n^{2}}{4} \\
& =\frac{n^{4}+n^{2}}{2}+\frac{n^{4}-2 n^{3}+n^{2}}{4} \\
& =\frac{3 n^{4}-2 n^{3}+3 n^{2}}{4} \\
& =\frac{3 n^{2}}{4}\left(n^{2}-\frac{2}{3} n+1\right) .
\end{aligned}
$$

Now that the function for every odd n is solved, let's take a look at how it's like when n is even, for example when $n=6$:

$$
\begin{aligned}
& {[\ldots] S_{1}=S_{1}} \\
& {[\ldots] S_{2}=S_{1}+n^{2}} \\
& {[\ldots] S_{3}=S_{1}+2 n^{2}} \\
& {[\ldots] S_{4}=S_{1}+2 n^{2}} \\
& {[\ldots] S_{5}=S_{1}+n^{2}} \\
& {[\ldots] S_{6}=S_{1}}
\end{aligned}
$$

It's symmetric along the central non-existing S, in this case $S_{3.5}$:

$$
\left(\begin{array}{l}
S_{1} \\
S_{2} \\
S_{3} \\
S_{4} \\
S_{5} \\
S_{6}
\end{array}\right)=\left(\begin{array}{c}
S_{1} \\
S_{1}+n^{2} \\
S_{1}+2 n^{2} \\
S_{1}+2 n^{2} \\
S_{1}+n^{2} \\
S_{1}
\end{array}\right) \rightarrow 2 \times\left(\begin{array}{c}
S_{1} \\
S_{1}+n^{2} \\
S_{1}+2 n^{2}
\end{array}\right)
$$

So we can conclude that if n is even, we'll have:

$$
\begin{aligned}
& \sum_{i=1}^{n} S_{i}=2 \times \sum_{i=1}^{\frac{n}{2}} S_{i} \\
& =2 \times \sum_{i=1}^{\frac{n}{2}}\left(S_{1}+(i-1) n^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \times\left(\frac{n}{2} S_{1}+n^{2} \sum_{i=1}^{\frac{n}{2}}(i-1)\right) \\
& =2 \times\left(\frac{n}{2} S_{1}+n^{2} \sum_{i=1}^{\frac{n-2}{2}} i\right) \\
& =2 \times\left(\frac{n}{2} S_{1}+n^{2} \times \frac{n}{2} \times \frac{n-2}{4}\right) \\
& =2 \times\left(\frac{n}{2} S_{1}+\frac{n^{4}-2 n^{3}}{4}\right) \\
& =n . S_{1}+\frac{n^{4}-2 n^{3}}{2} \\
& \text { placing } S_{1}=\frac{\text { A317614-OEIS: }}{} \\
& \quad=\frac{n^{4}}{2}+\frac{n^{4}-2 n^{3}}{4} \\
& \quad=\frac{3 n^{4}-2 n^{3}}{4} \\
& =\frac{3}{4} n^{2}\left(n^{2}-\frac{2}{3} n\right)
\end{aligned}
$$

Hence we can conclude that for any n, it's:

$$
\frac{3}{4} n^{2}\left(n^{2}-\frac{2}{3} n+(n \bmod 2)\right)
$$

First 20 elements of this series:
8, 54, 160, 425, $864,1666,2816,4617,7000,10406,14688,20449,27440,36450,47104,60401$, 75816, 94582, 116000

Here's a little python code that generates the series :

```
import math
max = int(input('range : '))
make_plot = 'y' in input('Make plot?[Y/N]').lower()
def f(n):
    r=0.75*n**2*(n**2 - 2/3*n + n % 2)
    return int(r)
seq = []
n = max
for }n\mathrm{ in range(2, max+1):
    sum = f(n)
    seq.append(sum)
    print(sum, end=', ')
if make_plot:
    from matplotlib.pyplot import plot, show
    plot(seq)
    show()
```

