login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189393
a(n) = phi(n^4).
6
1, 8, 54, 128, 500, 432, 2058, 2048, 4374, 4000, 13310, 6912, 26364, 16464, 27000, 32768, 78608, 34992, 123462, 64000, 111132, 106480, 267674, 110592, 312500, 210912, 354294, 263424, 682892, 216000, 893730, 524288, 718740, 628864, 1029000, 559872
OFFSET
1,2
LINKS
Vincenzo Librandi and T. D. Noe, Table of n, a(n) for n = 1..1000 (terms 1..680 from Vincenzo Librandi)
FORMULA
a(n) = n^3*phi(n).
Dirichlet g.f.: zeta(s - 4) / zeta(s - 3). The n-th term of the Dirichlet inverse is n^3 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 6*n^5 / (5*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^5 - p^4 - p + 1)) = 1.15762316629211803144... - Amiram Eldar, Dec 06 2020
MATHEMATICA
EulerPhi[Range[100]^4] (* T. D. Noe, Dec 27 2011 *)
PROG
(Magma) [ n^3*EulerPhi(n) : n in [1..100] ]
(PARI) vector(66, n, n^3*eulerphi(n)) /* Joerg Arndt, Apr 22 2011 */
CROSSREFS
Cf. A002618 (phi(n^2)), A053191 (phi(n^3)), A238533 (phi(n^5)), A239442 (phi(n^7)), A239443 (phi(n^9)).
Sequence in context: A070928 A180095 A234955 * A350236 A254951 A085537
KEYWORD
nonn,easy,mult
AUTHOR
Vincenzo Librandi, Apr 21 2011
STATUS
approved