login
A180095
a(n) = smallest number k such that three consecutive prime numbers prime(n), prime(n+1) and prime(n+2) are divisors of k, k+1 and k+2 respectively.
4
8, 54, 20, 791, 1936, 169, 4046, 114, 9453, 31929, 23901, 2664, 44977, 65188, 122482, 134991, 170982, 220027, 101103, 85555, 27886, 296724, 629140, 154326, 546207, 46864, 950587, 1043892, 1548890, 70738, 702945, 2389964
OFFSET
1,1
LINKS
EXAMPLE
a(20) = 85555 is a term because prime(20) = 71 => 85555 = 71*1205 ; 85556 =
73*1172 and 85557 = 79*1083 where 71, 73 and 79 are three consecutive primes.
MAPLE
with(numtheory):for p from 1 to 50 do: p1:=ithprime(p):p2:=ithprime(p+1):p3:=ithprime(p+2):it:=0:for n from 1 to 5000000 while(it=0) do:if irem(n, p1)=0 and irem(n+1, p2)=0 and irem(n+2, p3)=0 then it:=1:printf(`%d, `, n):else fi:od:od:
MATHEMATICA
snk[n_]:=Module[{k=1}, While[!AllTrue[{k, k+1, k+2}/n, IntegerQ], k++]; k]; snk/@Partition[Prime[Range[35]], 3, 1] (* Harvey P. Dale, Feb 26 2015 *)
PROG
(Sage) def A180095(n): return crt([-2..0][::-1], [nth_prime(i) for i in [n..n+2]]) # D. S. McNeil, Jan 16 2011
CROSSREFS
Cf. A077338.
Sequence in context: A337554 A370359 A070928 * A234955 A189393 A350236
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 16 2011
STATUS
approved