login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350102
Number of self-measuring subsets of the initial segment of the natural numbers strictly below n. Number of subsets S of [n] with S = distset(S).
4
1, 2, 3, 5, 7, 10, 12, 16, 18, 22, 25, 29, 31, 37, 39, 43, 47, 52, 54, 60, 62, 68, 72, 76, 78, 86, 89, 93, 97, 103, 105, 113, 115, 121, 125, 129, 133, 142, 144, 148, 152, 160, 162, 170, 172, 178, 184, 188, 190, 200, 203, 209, 213, 219, 221, 229, 233, 241, 245
OFFSET
0,2
COMMENTS
We use the notation [n] = {0, 1, ..., n-1}. If S is a subset of [n] then we define the distset of S (set of distances of S) as {|x - y|: x, y in S}. We call a subset S of the natural numbers self-measuring if and only if S = distset(S).
FORMULA
a(n) = a(n - 1) + tau(n - 1) for n >= 2, tau = A000005.
a(n) = 2 + Sum_{k=1..n-1} floor((n - 1)/k) for n >= 1.
a(n) = 2 + A006218(n - 1) for n >= 1.
a(n) = 1 + A054519(n - 1) for n >= 1.
Row sums of A350103.
a(n) >= n + floor(n/2) + floor(n/3).
EXAMPLE
a(0) = 1 = card({}).
a(4) = 7 = card({}, {0}, {0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 2, 3}).
a(6) = 12 = card({}, {0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 1, 2}, {0, 2, 4}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4, 5}).
MAPLE
A350102 := n -> ifelse(n = 0, 1, 2 + add(iquo(n-1, k), k = 1 .. n-1)):
seq(A350102(n), n = 0 .. 58);
MATHEMATICA
a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 1] + DivisorSigma[0, n - 1];
Table[a[n], {n, 0, 58}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 14 2021
STATUS
approved