Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jan 31 2024 22:23:42
%S 1,2,3,5,7,10,12,16,18,22,25,29,31,37,39,43,47,52,54,60,62,68,72,76,
%T 78,86,89,93,97,103,105,113,115,121,125,129,133,142,144,148,152,160,
%U 162,170,172,178,184,188,190,200,203,209,213,219,221,229,233,241,245
%N Number of self-measuring subsets of the initial segment of the natural numbers strictly below n. Number of subsets S of [n] with S = distset(S).
%C We use the notation [n] = {0, 1, ..., n-1}. If S is a subset of [n] then we define the distset of S (set of distances of S) as {|x - y|: x, y in S}. We call a subset S of the natural numbers self-measuring if and only if S = distset(S).
%H Winston de Greef, <a href="/A350102/b350102.txt">Table of n, a(n) for n = 0..10000</a>
%H Peter Luschny, <a href="/A350102/a350102.png">Illustrating self-measuring subsets of {0, 1, 2, 3}</a>.
%F a(n) = a(n - 1) + tau(n - 1) for n >= 2, tau = A000005.
%F a(n) = 2 + Sum_{k=1..n-1} floor((n - 1)/k) for n >= 1.
%F a(n) = 2 + A006218(n - 1) for n >= 1.
%F a(n) = 1 + A054519(n - 1) for n >= 1.
%F Row sums of A350103.
%F a(n) >= n + floor(n/2) + floor(n/3).
%e a(0) = 1 = card({}).
%e a(4) = 7 = card({}, {0}, {0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 2, 3}).
%e a(6) = 12 = card({}, {0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 1, 2}, {0, 2, 4}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4, 5}).
%p A350102 := n -> ifelse(n = 0, 1, 2 + add(iquo(n-1, k), k = 1 .. n-1)):
%p seq(A350102(n), n = 0 .. 58);
%t a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 1] + DivisorSigma[0, n - 1];
%t Table[a[n], {n, 0, 58}]
%Y Cf. A350103, A349976, A006218, A054519, A000005.
%K nonn
%O 0,2
%A _Peter Luschny_, Dec 14 2021