login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349889
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(2*n).
3
1, 1, 15, 666, 59230, 8775075, 1948891581, 605698755508, 250914820143996, 133610836793706405, 88919025666286620475, 72317513878698256697166, 70571883548815735717843290, 81383769918571603591381635271
OFFSET
0,3
FORMULA
G.f.: Sum_{k>=0} (k^2 * x)^k/(1 + k^2 * x).
a(n) ~ 1/(1 + exp(-2)) * n^(2*n). - Vaclav Kotesovec, Dec 10 2021
MATHEMATICA
Join[{1}, Table[Sum[(-1)^(n-k) k^(2n), {k, 0, n}], {n, 20}]] (* Harvey P. Dale, Nov 19 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*k^(2*n));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x)^k/(1+k^2*x)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 04 2021
STATUS
approved