|
|
A349889
|
|
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(2*n).
|
|
3
|
|
|
1, 1, 15, 666, 59230, 8775075, 1948891581, 605698755508, 250914820143996, 133610836793706405, 88919025666286620475, 72317513878698256697166, 70571883548815735717843290, 81383769918571603591381635271
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..13.
|
|
FORMULA
|
G.f.: Sum_{k>=0} (k^2 * x)^k/(1 + k^2 * x).
a(n) ~ 1/(1 + exp(-2)) * n^(2*n). - Vaclav Kotesovec, Dec 10 2021
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*k^(2*n));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x)^k/(1+k^2*x)))
|
|
CROSSREFS
|
Cf. A120485, A249459, A349884, A349891, A349902.
Sequence in context: A280179 A223203 A279465 * A279531 A079600 A171113
Adjacent sequences: A349886 A349887 A349888 * A349890 A349891 A349892
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Dec 04 2021
|
|
STATUS
|
approved
|
|
|
|