login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349890
Triangle read by rows: T(n,k) = n * 2^e(n) - (4^e(n) - 1) / 3 - k * (k - 1) / 2 with e(n) = 1 + floor(log_2(n)) for n >= 1 and 1 <= k <= n.
0
1, 3, 2, 7, 6, 4, 11, 10, 8, 5, 19, 18, 16, 13, 9, 27, 26, 24, 21, 17, 12, 35, 34, 32, 29, 25, 20, 14, 43, 42, 40, 37, 33, 28, 22, 15, 59, 58, 56, 53, 49, 44, 38, 31, 23, 75, 74, 72, 69, 65, 60, 54, 47, 39, 30, 91, 90, 88, 85, 81, 76, 70, 63, 55, 46, 36, 107, 106, 104, 101, 97, 92, 86, 79, 71, 62, 52, 41
OFFSET
1,2
COMMENTS
Conjecture: The terms of the triangle yield a permutation of the positive integers (A000027).
FORMULA
T(2^n, 1) = A007583(n) for n >= 0.
T(n, 1) - T(n, n) = A000217(n-1) for n > 0.
T(n, k) = T(n-1, k) + T(n-1, k-1) - T(n-1-2^(e(n-1)-e(n-2)), k-1) with e(n) = 1 + floor(log_2(n)) for n > 3 and 1 < k < n-1 (conjectured).
EXAMPLE
The triangle T(n, k) for 1 <= k <= n begins:
n\k: 1 2 3 4 5 6 7 8 9 10 11
================================================
01 : 1
02 : 3 2
03 : 7 6 4
04 : 11 10 8 5
05 : 19 18 16 13 9
06 : 27 26 24 21 17 12
07 : 35 34 32 29 25 20 14
08 : 43 42 40 37 33 28 22 15
09 : 59 58 56 53 49 44 38 31 23
10 : 75 74 72 69 65 60 54 47 39 30
11 : 91 90 88 85 81 76 70 63 55 46 36
etc.
PROG
(PARI) T(n, k) = my(e=1+logint(n, 2)); n*2^e - (4^e-1)/3 - k*(k-1)/2;
row(n) = vector(n, k, T(n, k)); \\ Michel Marcus, Dec 05 2021
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Dec 04 2021
STATUS
approved