OFFSET
0,2
COMMENTS
From Alonso del Arte, Mar 13 2008: (Start)
Column 0 contains the Mersenne numbers A000225.
Column 1 is A000918.
An even perfect number (A000396) is found in the triangle by reference to its matching exponent for the Mersenne prime p (A000043) thus: go to row 2p - 1 and then column p - 1 (remembering that the first position is column 0).
Likewise divisors of multiply perfect numbers, if not the multiply perfect numbers themselves, can also be found in this triangle. (End)
FORMULA
t(n, k) = 2^n - 2^k, where n is the row number and k is the column number, running from 0 to n - 1. (If k is allowed to reach n, then the triangle would have an extra diagonal filled with zeros) - Alonso del Arte, Mar 13 2008
EXAMPLE
First few rows of the triangle are;
1;
3, 2;
7, 6, 4;
15, 14, 12, 8;
31, 30, 28, 24, 16;
63, 62, 60, 56, 48, 32;
...
a(5, 2) = 28 because 2^5 = 32, 2^2 = 4 and 32 - 4 = 28.
MATHEMATICA
ColumnForm[Table[2^n - 2^k, {n, 15}, {k, 0, n - 1}], Center] (* Alonso del Arte, Mar 13 2008 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, May 24 2007
EXTENSIONS
Better definition from Alonso del Arte, Mar 13 2008
STATUS
approved