login
A349448
Dirichlet convolution of A000265 (odd part of n) with A349134 (Dirichlet inverse of Kimberling's paraphrases).
4
1, 0, 1, 0, 2, 0, 3, 0, 2, 0, 5, 0, 6, 0, 0, 0, 8, 0, 9, 0, 0, 0, 11, 0, 6, 0, 4, 0, 14, 0, 15, 0, 0, 0, 0, 0, 18, 0, 0, 0, 20, 0, 21, 0, -2, 0, 23, 0, 12, 0, 0, 0, 26, 0, 0, 0, 0, 0, 29, 0, 30, 0, -3, 0, 0, 0, 33, 0, 0, 0, 35, 0, 36, 0, -4, 0, 0, 0, 39, 0, 8, 0, 41, 0, 0, 0, 0, 0, 44, 0, 0, 0, 0, 0, 0, 0, 48, 0
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{d|n} A000265(d) * A349134(n/d).
From Bernard Schott, Dec 18 2021: (Start)
If p is an odd prime, a(p) = (p-1)/2.
If n is even, a(n) = 0. (End)
MATHEMATICA
k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#]*k[n/#] &, # < n &]; a[n_] := DivisorSum[n, # / 2^IntegerExponent[#, 2] * kinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
PROG
(PARI)
A000265(n) = (n >> valuation(n, 2));
A003602(n) = (1+(n>>valuation(n, 2)))/2;
memoA349134 = Map();
A349134(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349134, n, &v), v, v = -sumdiv(n, d, if(d<n, A003602(n/d)*A349134(d), 0)); mapput(memoA349134, n, v); (v)));
A349448(n) = sumdiv(n, d, A000265(d)*A349134(n/d));
CROSSREFS
Cf. A000265, A003602, A349134, A349447 (Dirichlet inverse).
Cf. also A349432, A349445.
Sequence in context: A128143 A292561 A027640 * A194666 A325799 A355930
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 19 2021
STATUS
approved