login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349445
Dirichlet convolution of A001511 (the 2-adic valuation of 2n) with A349134 (the Dirichlet inverse of Kimberling's paraphrases).
5
1, 1, -1, 1, -2, -1, -3, 1, -2, -2, -5, -1, -6, -3, 0, 1, -8, -2, -9, -2, 0, -5, -11, -1, -6, -6, -4, -3, -14, 0, -15, 1, 0, -8, 0, -2, -18, -9, 0, -2, -20, 0, -21, -5, 2, -11, -23, -1, -12, -6, 0, -6, -26, -4, 0, -3, 0, -14, -29, 0, -30, -15, 3, 1, 0, 0, -33, -8, 0, 0, -35, -2, -36, -18, 4, -9, 0, 0, -39, -2, -8
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{d|n} A001511(n/d) * A349134(d).
If p odd prime, a(p) = (1-p)/2. - Bernard Schott, Nov 19 2021
MATHEMATICA
k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#]*k[n/#] &, # < n &]; a[n_] := DivisorSum[n, IntegerExponent[2*#, 2]*kinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
PROG
(PARI)
A001511(n) = (1+valuation(n, 2));
A003602(n) = (1+(n>>valuation(n, 2)))/2;
memoA349134 = Map();
A349134(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349134, n, &v), v, v = -sumdiv(n, d, if(d<n, A003602(n/d)*A349134(d), 0)); mapput(memoA349134, n, v); (v)));
A349445(n) = sumdiv(n, d, A001511(n/d)*A349134(d));
CROSSREFS
Cf. A001511, A003602, A349134, A349444 (Dirichlet inverse), A349446 (sum with it).
Cf. also A349432, A349448.
Sequence in context: A124579 A035306 A101691 * A205379 A238881 A070094
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 18 2021
STATUS
approved