login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of A001511 (the 2-adic valuation of 2n) with A349134 (the Dirichlet inverse of Kimberling's paraphrases).
5

%I #12 Nov 21 2021 01:19:45

%S 1,1,-1,1,-2,-1,-3,1,-2,-2,-5,-1,-6,-3,0,1,-8,-2,-9,-2,0,-5,-11,-1,-6,

%T -6,-4,-3,-14,0,-15,1,0,-8,0,-2,-18,-9,0,-2,-20,0,-21,-5,2,-11,-23,-1,

%U -12,-6,0,-6,-26,-4,0,-3,0,-14,-29,0,-30,-15,3,1,0,0,-33,-8,0,0,-35,-2,-36,-18,4,-9,0,0,-39,-2,-8

%N Dirichlet convolution of A001511 (the 2-adic valuation of 2n) with A349134 (the Dirichlet inverse of Kimberling's paraphrases).

%H Antti Karttunen, <a href="/A349445/b349445.txt">Table of n, a(n) for n = 1..20000</a>

%F a(n) = Sum_{d|n} A001511(n/d) * A349134(d).

%F If p odd prime, a(p) = (1-p)/2. - _Bernard Schott_, Nov 19 2021

%t k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#]*k[n/#] &, # < n &]; a[n_] := DivisorSum[n, IntegerExponent[2*#, 2]*kinv[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 19 2021 *)

%o (PARI)

%o A001511(n) = (1+valuation(n,2));

%o A003602(n) = (1+(n>>valuation(n,2)))/2;

%o memoA349134 = Map();

%o A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(d<n,A003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v)));

%o A349445(n) = sumdiv(n,d,A001511(n/d)*A349134(d));

%Y Cf. A001511, A003602, A349134, A349444 (Dirichlet inverse), A349446 (sum with it).

%Y Cf. also A349432, A349448.

%K sign

%O 1,5

%A _Antti Karttunen_, Nov 18 2021