login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349451
Dirichlet inverse of Fibonacci numbers, when started from A000045(1): 1, 1, 2, 3, 5, 8, 13, 21, ...
5
1, -1, -2, -2, -5, -4, -13, -16, -30, -45, -89, -122, -233, -351, -590, -944, -1597, -2496, -4181, -6640, -10894, -17533, -28657, -46000, -75000, -120927, -196290, -317018, -514229, -830580, -1346269, -2176288, -3524222, -5699693, -9227335, -14924550, -24157817, -39079807, -63245054, -102320320, -165580141, -267890844
OFFSET
1,3
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A000045(n/d) * a(d).
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} Fibonacci(k) * A(x^k). - Ilya Gutkovskiy, Feb 23 2022
MATHEMATICA
a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * Fibonacci[n/#] &, # < n &]; Array[a, 42] (* Amiram Eldar, Nov 22 2021 *)
PROG
(PARI)
memoA349451 = Map();
A349451(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349451, n, &v), v, v = -sumdiv(n, d, if(d<n, fibonacci(n/d)*A349451(d), 0)); mapput(memoA349451, n, v); (v)));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 22 2021
STATUS
approved