login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349341
Dirichlet inverse of A026741, which is defined as n if n is odd, n/2 if n is even.
5
1, -1, -3, -1, -5, 3, -7, -1, 0, 5, -11, 3, -13, 7, 15, -1, -17, 0, -19, 5, 21, 11, -23, 3, 0, 13, 0, 7, -29, -15, -31, -1, 33, 17, 35, 0, -37, 19, 39, 5, -41, -21, -43, 11, 0, 23, -47, 3, 0, 0, 51, 13, -53, 0, 55, 7, 57, 29, -59, -15, -61, 31, 0, -1, 65, -33, -67, 17, 69, -35, -71, 0, -73, 37, 0, 19, 77, -39, -79
OFFSET
1,3
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A026741(n/d) * a(d).
a(n) = A349342(n) - A026741(n).
a(2n+1) = A349343(2n+1) for all n >= 1.
Multiplicative with a(2^e) = -1, a(p) = -p and a(p^e) = 0 if e > 1. - Sebastian Karlsson, Nov 15 2021
MATHEMATICA
a[1]=1; a[n_]:=-DivisorSum[n, If[OddQ[n/#], n/#, n/(2#)]*a@#&, #<n&]; Array[a, 79] (* Giorgos Kalogeropoulos, Nov 15 2021 *)
f[p_, e_] := If[e == 1, -p, 0]; f[2, e_] := -1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
PROG
(PARI) A349341(n) = { my(f = factor(n)); prod(i=1, #f~, if(2==f[i, 1], -1, if(1==f[i, 2], -f[i, 1], 0))); };
(Python)
from sympy import prevprime, factorint, prod
def f(p, e):
return -1 if p == 2 else 0 if e > 1 else -p
def a(n):
return prod(f(p, e) for p, e in factorint(n).items()) # Sebastian Karlsson, Nov 15 2021
CROSSREFS
Agrees with A349343 on odd numbers.
Sequence in context: A307806 A127418 A099550 * A099549 A334212 A082725
KEYWORD
sign,easy,mult
AUTHOR
Antti Karttunen, Nov 15 2021
STATUS
approved