login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349338
Dirichlet convolution of A000010 (Euler totient phi) with A080339 (characteristic function of noncomposite numbers).
4
1, 2, 3, 3, 5, 5, 7, 6, 8, 9, 11, 8, 13, 13, 14, 12, 17, 14, 19, 14, 20, 21, 23, 16, 24, 25, 24, 20, 29, 22, 31, 24, 32, 33, 34, 22, 37, 37, 38, 28, 41, 32, 43, 32, 38, 45, 47, 32, 48, 44, 50, 38, 53, 42, 54, 40, 56, 57, 59, 36, 61, 61, 54, 48, 64, 52, 67, 50, 68, 58, 71, 44, 73, 73, 68, 56, 76, 62, 79, 56, 72, 81
OFFSET
1,2
COMMENTS
Möbius transform of A230593.
LINKS
FORMULA
a(n) = Sum_{d|n} A000010(n/d) * A080339(d).
a(n) = Sum_{d|n} A008683(n/d) * A230593(d).
a(n) = Sum_{d|n} A349435(n/d) * A348976(d).
a(n) = A000010(n) + A117494(n). [Because A117494 is the Möbius transform of A069359]
For all n >= 1, a(A005117(n)) = A348976(A005117(n)).
Sum_{k=1..n} a(k) ~ 3 * (1 + A085548) * n^2 / Pi^2. - Vaclav Kotesovec, Nov 20 2021
MATHEMATICA
a[n_] := DivisorSum[n, Boole[!CompositeQ[#]] * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 17 2021 *)
PROG
(PARI) A349338(n) = sumdiv(n, d, eulerphi(n/d)*((1==d)||isprime(d)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 17 2021
STATUS
approved