login
A349338
Dirichlet convolution of A000010 (Euler totient phi) with A080339 (characteristic function of noncomposite numbers).
4
1, 2, 3, 3, 5, 5, 7, 6, 8, 9, 11, 8, 13, 13, 14, 12, 17, 14, 19, 14, 20, 21, 23, 16, 24, 25, 24, 20, 29, 22, 31, 24, 32, 33, 34, 22, 37, 37, 38, 28, 41, 32, 43, 32, 38, 45, 47, 32, 48, 44, 50, 38, 53, 42, 54, 40, 56, 57, 59, 36, 61, 61, 54, 48, 64, 52, 67, 50, 68, 58, 71, 44, 73, 73, 68, 56, 76, 62, 79, 56, 72, 81
OFFSET
1,2
COMMENTS
Möbius transform of A230593.
LINKS
FORMULA
a(n) = Sum_{d|n} A000010(n/d) * A080339(d).
a(n) = Sum_{d|n} A008683(n/d) * A230593(d).
a(n) = Sum_{d|n} A349435(n/d) * A348976(d).
a(n) = A000010(n) + A117494(n). [Because A117494 is the Möbius transform of A069359]
For all n >= 1, a(A005117(n)) = A348976(A005117(n)).
Sum_{k=1..n} a(k) ~ 3 * (1 + A085548) * n^2 / Pi^2. - Vaclav Kotesovec, Nov 20 2021
MATHEMATICA
a[n_] := DivisorSum[n, Boole[!CompositeQ[#]] * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 17 2021 *)
PROG
(PARI) A349338(n) = sumdiv(n, d, eulerphi(n/d)*((1==d)||isprime(d)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 17 2021
STATUS
approved