login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Dirichlet convolution of A000010 (Euler totient phi) with A080339 (characteristic function of noncomposite numbers).
4

%I #16 Nov 20 2021 03:58:30

%S 1,2,3,3,5,5,7,6,8,9,11,8,13,13,14,12,17,14,19,14,20,21,23,16,24,25,

%T 24,20,29,22,31,24,32,33,34,22,37,37,38,28,41,32,43,32,38,45,47,32,48,

%U 44,50,38,53,42,54,40,56,57,59,36,61,61,54,48,64,52,67,50,68,58,71,44,73,73,68,56,76,62,79,56,72,81

%N Dirichlet convolution of A000010 (Euler totient phi) with A080339 (characteristic function of noncomposite numbers).

%C Möbius transform of A230593.

%H Antti Karttunen, <a href="/A349338/b349338.txt">Table of n, a(n) for n = 1..20000</a>

%F a(n) = Sum_{d|n} A000010(n/d) * A080339(d).

%F a(n) = Sum_{d|n} A008683(n/d) * A230593(d).

%F a(n) = Sum_{d|n} A349435(n/d) * A348976(d).

%F a(n) = A000010(n) + A117494(n). [Because A117494 is the Möbius transform of A069359]

%F For all n >= 1, a(A005117(n)) = A348976(A005117(n)).

%F Sum_{k=1..n} a(k) ~ 3 * (1 + A085548) * n^2 / Pi^2. - _Vaclav Kotesovec_, Nov 20 2021

%t a[n_] := DivisorSum[n, Boole[!CompositeQ[#]] * EulerPhi[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 17 2021 *)

%o (PARI) A349338(n) = sumdiv(n, d, eulerphi(n/d)*((1==d)||isprime(d)));

%Y Cf. A000010, A005117, A069359, A080339, A117494, A230593, A348976, A349435.

%K nonn

%O 1,2

%A _Antti Karttunen_, Nov 17 2021